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Abstract

Recent developments in experimental designs for clinical trials are stimulated

by advances in personalized medicine. Clinical trials today are very different

from traditional studies, and typically seek to answer several research questions

for multiple patient subgroups. Bayesian designs, which enable the use of sound

utilities and prior information, can be tailored to these settings. On the other

hand, frequentist concepts of data analysis remain pivotal; for example type I/II

error rates are the accepted standards for reporting trial results and are required

by regulatory agencies. Bayesian designs are often perceived as incompatible

with these established concepts, which hinders widespread clinical applications.

We discuss a pragmatic framework for combining Bayesian experimental designs

with frequentists analyses. The approach wishes to facilitate a more widespread

application of Bayesian experimental designs, and ultimately analysis, in clinical

trials. We discuss several applications of this framework in different clinical

settings, including bridging trials and multi-arm trials in infectious diseases and

Glioblastoma. We also outline computational algorithms for implementing the
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proposed approach.

1 Introduction

What is a Bayesian Clinical Trial Design? The Bayesian design of a clinical trial

is characterized by the collection and subsequent formalization of available information

through a prior distribution. Previous clinical trials, data from epidemiological studies

or disease models are standard examples of relevant information used to specify the

prior. In summary, the design of the trial starts from a prior distribution π over a set

of unknown parameters

θ ∼ π.

Throughout our discussion π will be a genuine representation of the investigators

beliefs and uncertainties on key parameters θ. Typically in medicine θ includes re-

sponse probabilities, survival curves or toxicity rates of different treatments. These

parameters will be estimated and compared using the data generated by the clinical

trial.

The Bayesian Designer and the use of the prior π. The information em-

bedded in the prior π can be used in several contexts and for different purposes.

Examples are (i) the choice of the sample size for a two-arm or a multi-arm study

[41], (ii) the definition of a two stage design, with stage-specific samples sizes selected

using the prior π [38], and (iii) Bayesian adaptive randomization, with reinforcement

of the randomization probabilities during the trial toward the most promising arms

[35, 36, 26].

Decision Theory. Some of these designs, for example two arm studies, can be

optimized by a direct application of the decision theoretic paradigm. The design

is selected by the prior π and the utility function u, which is representative of the

investigators preferences. In general, the solution of the decision problem coincides
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with the design d that maximizes the expected value

Eπ,d(u)

of the utility generated by the experiment [13]. Here the utility u = u(X, d) is a

random quantity, and it is a function of the data X collected during the study with

design d. Additionally, in some cases, it is convenient to include the unknown parame-

ter θ ∼ π in the definition of u = u(X, θ, d) to simplify its interpretation. For instance,

the sample size for a two-arm study d can be selected by specifying a utility function

that captures the trade off between marginal costs associated with the enrollment of

each patient and the likelihood to correctly identify and recommend the best available

treatment. In this example

(1)

u(X, θ, d) = data support recommendation of the experimental treatment

− costant× sample size

In other contexts the selected design d is not the solution of a maximization prob-

lem. The use of a prior distribution π is combined with less explicit utility criteria.

Examples include the use of adaptive randomization probabilities in multi-arm trials,

with randomization probabilities proportional to the posterior probabilities of positive

treatment effects [6, 35]. In this case the utility criteria is not explicitly stated, but

the intention is explicitly to increase the accrual toward the most promising arms.

This type of studies use the prior π and the data generated during the trial for inter-

pretable decisions, such as variations of the randomization probabilities, or to drop

arms during the trial. We refer to Berry and Fristedt [7] for discussions of the decision

theoretic framework to define adaptive randomization probabilities which illustrate

3

Page 3 of 27

John Wiley & Sons

Applied Stochastic Models in Business and Industry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

computational complexities and justify the use of alternative heuristic algorithms.

Prior information and utility criteria in non Bayesian designs. For

trials designed without the explicit used of a utility functions u and a prior distribu-

tions π, sample sizes and interim decision rules are often selected using substitutes of

(π, u), such as tables which report operating characteristics under a list of simulation

scenarios. These evaluations typically involve several candidate designs. The list of

scenarios, similarly to π, is representative of prior beliefs and predictions of the in-

vestigator. Symmetrically, the choice of the operating characteristics to be compared

across potential designs mirrors the investigators preferences. We often have a one-to-

one correspondence between the key components of the decision theoretic framework

(π, u) and those of a simulation study, scenarios and operating characteristics [21].

What is the motivation for the study of Bayesian designs? We list a few

closely related advantages for using prior distributions and utility functions. First a

pragmatic aspect. The selection of a design based on examining tables and summaries

across simulation scenarios, candidate designs and competing operating characteris-

tics can be quite challenging and time consuming. Second, the use of the decision

theoretic approach forces investigators to think through and explicitly state goals and

assumptions via a prior π and and a utility function. In routine tasks, for example se-

lection of futility stopping boundaries, it is easier to interpret and subsequently agree

or disagree on the choice of π and u, than having a debate over large tables of op-

erating characteristics. Additionally, a clinical trial design selected based on decision

theoretic arguments can always – and in most cases should – be scrutinized through

interpretable summaries of the resulting operating characteristics. Still, skepticism

can be an appropriate reaction towards attempts to declare exhaustive the evaluation

of a design through simulations and tables of operating characteristics. These tables

can be necessary but not sufficient for a solid evaluation the trial design. Third,

in complex trials it is difficult to replace prediction and posterior probabilities with
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alternative data summaries with comparable level of interpretability. In particular,

prediction and posterior probabilities are useful and interpretable to specify interim

analyses during the the study. For instance, in studies with biomarker-treatment in-

teractions, posterior probabilities can be used to modify arm-specific eligibility criteria

base on accumulating data [23, 3].

Beyond Pros and Cons of the Bayesian approach. Limitations of the

Bayesian framework that prevent a more widespread use in clinical trials, includ-

ing computational demand, prior elicitation and the acceptance of a single utility

function from several stakeholders, have been discussed in the literature [22, 17]. The

goal of the sections that follow is complementary to these discussions of the pros and

cons of the Bayesian framework. We discuss a possible strategy to facilitate the use

of Bayesian foundations in clinical trials. Most clinical investigators and scientific

review panels are not against the use of Bayesian designs. But there are barriers to

a rapid diffusion of Bayesian methods in clinical trial designs. Here we only focus on

one of them, perhaps an important one, by illustrating that the results reported at

completion of a Bayesian trial do not necessary need to be linked and influenced by

the choice of the prior π.

Reporting results from a Bayesian trial. Clinicians, scientific review panels,

and other stakeholders in the clinical trials arena, in most cases, are familiar with

key statistical concepts from the frequentist literature; type I error rates, hypothesis

testing and confidence intervals to name a few. These concepts are accepted standards

for reporting results in clinical trials and to communicate evidence of positive effects or

futility of novel treatments. Bayesian designs are often perceived as incompatible with

these established metrics for reporting results, in particular p-values and hypotheses

testing. This is the perceived barrier that we will discuss. We illustrate the use of

methods to combine the use of Bayesian models π, utility functions u and frequentist

analyses, including the control of type I errors rates and confidence intervals.
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How do we formalize the goal of combining π, u, and frequentist analye-

ses? We include frequentists constraints into a Bayesian decision theoretic framework

[38]. These constraints reflect desiderata from collaborators and other stakeholders.

Example include control of type I error below 0.05, or minimal bias in the effect esti-

mates. The first panel of Figure 1 illustrates graphically the application of the decision

theoretic framework. The action space D, i.e. the set of all trial designs, is shown on

the right. A point d in D is a candidate trial design and, typically it includes sample

size, stopping rules, and also a plan on how to analyze the data and communicate

the final results of the trial. Estimators and procedures to report evidence of treat-

ment effects or futility are components of the trial design d. Importantly the plan for

final analyses can vary substantially across candidate designs in D. The space D is

mapped to the range of expected utilities U(D). The Bayesian statistician selects the

trial design dmax that maximizes the expected utility. In the first panel of Figure 1

umax is the maximum of the expected utility surface, which is achieved by the design

dmax.

We can now describe the strategy of our Bayesian biostatistician to select a trial

design, by including its interactions with the scientific community, clinicians, editors

of scientific journals and review committees. We model these interactions by adding

constraints to the operating characteristics of the trial (see Figure 1, Panel B). Ex-

amples, as we mentioned, include the requirement to bound Type I/II error rates

below explicit thresholds, or to limit the expected enrollment below a pre-specified

threshold under the hypothesis of a detrimental or toxic treatment. These are well de-

fined frequentist constraints, and a candidate design d can satisfy the requirements or

not, irrespective of the prior distibution π. In Figure 1 we indicate these constraints

through the set V . The subset of designs that satisfy them o−1(V ) is identified by

the map o which links designs d to their operating characteristics o(d). The choice is

now constrained to the selection of a possibly suboptimal design within o−1(V ). Our
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Bayesian decision maker selects the design dc−max that optimizes the expected utility

surface within the subset o−1(V ).

Figure 1: Graphical representation of the optimal Bayesian design dmax and of the
constrained optimal Bayesian design dc−max. In this diagram V , o−1(V ) and U(o−1(V ))
denote the regulator constraints, the subset of designs with operating characteristics
in V and the corresponding expected utilities. The expected utilities of dmax and
dc−max are umax and uc−max respectively.
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Why should one follow this framework? We list a few properties of our

constrained decision theoretic (CDT) framework:

• It includes an explicit unambiguous utility function u as the primary criterion

to select candidate designs.

• It is straightforward to extend the approach to prediction-based adaptive strate-

gies and algorithms that remain similar in spirit, and share a similar interpreta-

tion.
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• It makes effective use of prior estimates and scientific knowledge.

• It allows dissemination of the major findings of trial s using an established

scientific language, including frequentist concepts such as hypothesis testing and

power.

• It facilitates communication of the design characteristics with multiple stake-

holders and non-statisticians.

Roadmap. In the sections that follow we first provide an example of a direct applica-

tion the CDT framework. We will then move to examples of more complex sequential

designs where, similarly to the standard decision-theoretic framework, exact solutions

become computationally unfeasible, and it is necessary to relax the optimization strat-

egy with heuristic algorithms.

2 Constrained Optimal Designs

2.1 Constrained Optimal Bridging Trials

In Ventz and Trippa [38] we previously explored the use of the CDT framework for

the design of bridging trials [12]. Here we provide a summary of the results obtained

by applying the CDT framework. A bridging trial assesses whether a drug recently ap-

proved in a region A, say Europe, can be marketed in a different region B, for instance

Japan. Clinical data from region A should guarantee that the drug is effective and

safe, and the bridging trial is a supplementary study to test whether the drug has a

similar treatment effect and safety profile in population B [12]. In this setting we have

historical data from randomized trials and information, which the investigator can

incorporate in the prior π. The use of the CDT framework requires the specification

of three components π, u and V . One can argue that the available data allow straight-

forward specification of the first component π [12]. Additionally, the investigator can
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specify sound utility functions based on estimates of relevant utility parameters, such

as the potential number of prescriptions per year in region B. Regulators and other

stakeholders, such as patient representatives, can express the need for controlling type

I error rates and/or other characteristics of the study from a frequentist viewpoint.

We indicate the constraints by V as before.

Problem setting. For each patient i, the primary endpoint Yi, say the reduction

of blood pressure, conditional on the treatment Ci = 1 or the placebo Ci = 0, is

assumed normal distibuted with mean θk, k = 0, 1. The company has to test H0 :

γB = 0 versusH1 : γB > 0, where γB = θ0−θ1. A group-sequential trial with a possible

early termination at interim analyses t = 1, · · · , T − 1 in favor of H1 is used, and N

patients will be randomized to each arm between consecutive interim analyses. We use

the summary Zt = (θ̂0,t− θ̂1,t)/
√
(2σ2)/(Nt) and, without loss of generality, assume a

common variance σ2 for the two arms. Here θ̂ denotes maximum likelihood estimates.

The vector Z1:T = (Z1, . . . , ZT ) is Gaussian with mean µ = (γB
√

Nt/2σ2)t≤T and

covariance matrix W = (Wt,t′)1≤t,t′≤T , where Wt,t′ =
√

t/t′ for t ≤ t′.

Specification of V, π and u. Low power could delay patients’ access to an

effective drug. We therefore assume that the regulator requires type I and II error

rates, at H0 and γB = γ∗
B > 0, to be controlled at suitably chosen α and β levels

respectively. The information from region A can be summarized by a Gaussian prior

for the parameter γB. Power priors [11], for example, are directly applicable to specify

π based on information from region A. Finally we use an interpretable utility function

similar to (1), with costs linear in the number of randomized patients and, in case of

a true positive finding, a fixed payoff at termination of the trial [38].

Decision problem. A design is characterized by the sample size N and stopping

boundaries z1:T = (z1, · · · , zT ) at interim and final analyses t = 1, · · · , T .

Results: Z thresholds characteristics. We solved the constrained optimiza-

tion problem and computed optimal thresholds z1:T for the summary statistics Z1:T to
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allow early termination of the study with several variations on the prior π and utility

function u. The solution showed negligible departures from linear thresholds. As ex-

pected, by varying utility parameters and prior distribution, we obtained considerably

different thresholds.

Algorithm 1: Cut and Zoom-in To compute the optimal stopping rules z1:T we

leverage on monotonicity properties [38]. First, the expectation of the utility function

(1) can be written as the sum of two monotone functions U(d) = U1(z1:T )− U2(z1:T ).

Here U1(z1:T ) is equal to the probability of the intersection of two events (i) pres-

ence of a positive treatment effects, and (ii) reporting evidence of treatment effects

at completion of the study, while U2(z1:T ) is proportional to the expected sample

size. Second, assuming that N is fixed, the operating characteristic o(d(z1:T )) =

sup{γk:γk≤∆0} Pγk [Z1:T,k ≥ z1:T ] is monotone in the thresholds z1:T . Similarly, also the

indicator function 1(o(d) ∈ V ), which indicates if the candidate design satisfies the

operating characteristics requirements V or not, is monotone in z1:T . The algorithm

used to compute the optimal design partitions the space of designs and computed

lower and upper expected utility bounds for each partition set. Figure 2 is a graph-

ical representation of the optimization algorithm. In this case we have one interim

analysis, it is therefore necessary to compute T = 2 thresholds. The two panels show

the current status of the algorithm at different iterations, which is a collection of rect-

angles that could potentially harbor the constrained optimum. At each iteration a

single rectangle is either (i) removed from the list because it does not contain dc−max

or (ii) divided in two sub-rectangles. By computations of the expected utilities and

operating characteristics at the extremes of the rectangles, and exploiting monotonic-

ity, the algorithm progressively and iteratively remove candidate designs d and zooms

into regions of the action space with comparable operating characteristics that include

the constrained optimum.
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Figure 2: Cut-&-Zoom-in algorithm for computing the contained optimal design
dc−max. The left and right panel show the second and fifth iteration of the algorithm.
At each iteration the algorithm (i) either removes rectangles for which the utility
can be bound by an other rectangle, (ii) or splits the rectangle into two disjoined
rectangles.
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2.2 A multi-arm response-adaptive design in Glioblastoma

Glioblastoma and motivations to look beyond standard designs. Glioblas-

toma is a brain cancer associated with a poor prognosis. Numerous treatments, in

recent years, have shown promise in preclinical models, but translation into tangible

treatment effects and survival improvement has been slow and nearly negligible [28].

Current trial designs and more generally pipelines for developing new treatments have

been severely criticized for being very inefficent [5]. Most of the current early-phase

trials for patients with glioblastoma are single-arm studies. In contrast, we proposed

and evaluated potential benefits of using controlled, response-adaptive multi-arm trials

in this context [36].
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Response adaptive randomization Adaptive randomization schemes are de-

signed to obtain a more desirable assignment of patients in the trial to competing

treatments compared to balanced designs. Several contributions considered two-arm

and multi-arm controlled trials and provide motivations for adaptively tuning the ran-

domization probabilities during the study on the basis of the accumulation outcome

data [35, 25, 3, 23]. Response adaptive randomization can be defined as the applica-

tion of a map, used each time a patient is enrolled in the trial, which transforms the

available data into suitable randomization probabilities. Frequentist approaches are

direct, in that, intuitive and heuristic rules are used to map the available data into

randomization probabilities [40, 14, 32, 31]. These maps have been assessed using

asymptotic theoretical analysis in and simulation studies [32, 19, 20, 43]. In contrast

Bayesian randomization methods are indirect, model based and exploit Bayesian pre-

dictions during the trial. The prior distribution π models jointly the primary outcome

distributions θ0, θ1, . . . , θK for control and experimental treatments. Most Bayesian

adaptive strategies map posterior probabilities of treatment effects, say (θk − θ0), into

randomization probabilities [35, 24, 42].

Missing utility. Most Bayesian adaptive randomization procedures do not max-

imize an explicit utility function. The computational burden to optimize a sequen-

tial multi-arm study motivates the use of heuristic procedures. In different words,

we will discuss procedures that relax the decision theoretic paradigm. Zhang et al.

[44] compare heuristics and decision theoretic optimal designs within the context of

biomarker-subgroup trials. The development of nearly optimal assignment procedures

tailored to explicit utility functions u remains an attractive area of research.

Randomization. In Trippa et al. [36] we consider ed a controlled four-arm trial.

The response to treatments is evaluated using progression-free survive endpoints and

(S0, S1, · · · , S3) denote the unknown time to event distributions for the control arm

k = 0 and experimental thearpies k = 1, 2 and 3. These are assume to follow a propor-
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tional hazards model, with unknown positive hazard ratios θ = (θ1, θ2, θ3), such that

the equalities Sk(t) = [S0(t)]θk hold, for every t ≥ 0 and k = 1, 2, 3. We use identical

symmetric prior distributions with mean zero for the log-hazard ratios log(θ1), log(θ2)

and log(θ3). In different words, the prior π assigns symmetric probabilities to scenar-

ios where treatment k has a positive or negative effect compared to the control. We

consider time varying randomization probabilities

Rk
i = p(i-th enrolled patient is randomized to treatment k|available DATA)

defined by the following expressions:

Rk
i ∝

p (θk < 1 | available DATA)γ(i)
∑

ℓ=1,2,3

p (θℓ < 1 | available DATA)γ(i)
if k = 1, 2, 3, and

R0
i ∝ exp

{
η(i)×

(
max
ℓ=1,2,3

#[assignments to arm ℓ]−#[assignments to control]
}
/3.

The above two expressions have a clear interpretation. The first one shows that for

any choice of the tuning function γ(i) > 0 the algorithm assigns patients with higher

probabilities to experimental arms with evidence of a positive treatment effect θk < 1.

Natural candidates for the tuning parameters γ(i) are non decreasing functions with

values close to zero during the initial stage of the trial. The second expression aims

at approximately match patient accrual to the control treatment with the number of

patients on the experimental are with the highest patient accrual. In our experience

values of η close to 0.25 during the final stage of the trial suffices to obtain the desired

balance without making treatment assignment highly predictable.

Figure 3 shows the distribution of the arm specific sample sizes under a fixed

scenario across 10,000 simulated trials. The above formulation of the adaptive ran-

domization probabilities can be straightforwardly extended and used for binary or
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continuous outcomes as in the next example.

Figure 3: Distribution of patients accrual to the control and experimental arms across
simulated trials using Bayesian adaptive randomization. The left panel shows the
distribution of patients accrual for each therapy. The right panel shows the true
progression-free survival for the control and experimental arms.
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2.3 The endTB trial: An adaptive Study in Tuberculosis

In 2010 there were an estimated 650,000 prevalent cases of multi-drug resistant tuber-

culosis (MDR-TB), and nearly 500,000 new cases emerge annually through acquisition

of resistance during treatment and through airborne transmission [27]. The need for

new regimens is therefore indisputable. The recent conditional approval by regulatory

authorities of two new anti-TB drugs, bedaquiline and delamanid, presents the first

opportunity of a significant improvement in the treatment of MDR-TB since half a

centory.

The endTB study is a Phase III trial that seeks to evaluate five novel treatments for
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MDR-TB. The study is sponsored by Médecins sans Frontiéres, planned in conjunction

with Partners In Health, Harvard Medical School, Epicentre, and the Institute for

Tropical Medicine, and supported by UNITAID. It will generate evidence on efficacy

and recommendations for those arms that will show treatment effects. The endTB

is estimated to have a final enrollment of 750 patients. We designed the trial using

Bayesian outcome-adaptive randomization [10], adapting on surrogate and primary

endpoints based on joint modeling of the binary culture conversion outcome after 8

and 39 weeks of treatment

θ39,k = θ39,PR,k × θ8,k + θ39,NR,k × (1− θ8,k).

Here θ8,k denotes the probability of a positive early response to therapy k after 8

weeks of treatment, while θ39,PR,k and θ39,NR,k are the response rates after 39 weeks

given a positive (PR) or negative (NR) 8-weeks response. We include interim analyses

at regular intervals after a total of 100, 200, and so on, primary outcomes become

available. Arms are dropped for futility if the available data and posterior probabilities

suggest no treatment effect on the primary outcome. The endTB trial uses outcome

adaptive randomization, followed, at the end of the trial by frequentists analysis using

a strong control of pre-specified targeted type I error rates. In Section 3.2 and 3.3

below we discuss algorithms for the control of type I error rates of adaptive trials.

A detailed study of the design is provided in [10], here we provide a brief sum-

mary of the results. When we compare the statistical power under adaptive and

non-adaptive designs, under several hypothetical scenarios, see Figure 4 for two ex-

amples, we observe that Bayesian outcome-adaptive randomization requires fewer pa-

tients than non-adaptive designs to achieve the targeted power. Moreover, adaptive

randomization consistently allocates more participants to effective arms compared to

alternative non-adaptive designs.
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effects on overall response rates or PFS translate to effects in OS [2]. The approach

that we followed is similar to the one illustrated for the endTB trial.

Trippa et al. [37] defined an adaptive randomization procedure for multi-arm

trials based on a joint Bayesian model for PFS and OS outcomes. The model in-

cludes (K + 1) PFS distributions (SPSF,0, · · · , SPSF,K) and (K + 1) OS distributions

(SOS,0, · · · , SOS,K), one for each of the K experimental arms and the control arm

k = 0. Survival distributions are assumed to follow a proportional hazard model

Sx,k = S
θx,k
x,0 for both x = PFS,OS and k = 1, 2, 3 with joint prior distribution for

the unknown hazard ratios π(θPFS, θOS). Adaptation based on OS leverages on early

PFS information through the joined model π(θPFS, θOS). At each patients’ enrollment

the posterior distributions of θOS given available PFD and OS outcomes is translated

into randomization probabilities.

Advantages of joint modeling in this setting can be summarized by two properties.

First, when treatment effects θPFS,k and θOS,k for PFS and OS are concordant, the

proposed approach results in efficiency gains compared with randomization based on

OS alone while sacrificing minimal efficiency compared with using PFS as the primary

endpoint. Second, if treatment effects are limited to PFS, our approach provides

randomization probabilities that are close to those based on OS alone. The alternative

to our composite model would be to use OS only. Results in Trippa et al. [37]

showed that the OS-only adaptive design still results in efficiency gains over a balanced

randomization and, as expected, is not sensitive to randomizations driven by PFS

effects that do not translate into OS improvements.

3 Computational Methods

We discuss computational approaches which helped us to evaluate and monitor fre-

quentist operating characteristics for Bayesian designs. We illustrate (i) a stochastic
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search algorithm for the optimal constrained design dc−max, followed by (ii) a boot-

strap procedure and (iii) an importance sampling algorithm, which we used for the

endTB and Glioblastoma trial designs to control frequentist operating characteristics.

3.1 Simulated Annealing for Constrained Optimal Designs

Finding the constrained optimal designs analytically is infeasible in most cases. Stochas-

tic search procedures can be used to find dc−max. We describe a simulated annealing

algorithm for finding dc−max [38, 29]. The procedure is summarized in Algorithm 2.

The algorithm approximately identifies the constrained optimum within a compact set

of candidate designs. The procedure starts from a candidate design d1. For instance

by generating random designs d from the set of designs o(V ), which satisfy the desired

regulatory constraints V , and then selecting the design with the highest expected util-

ity as starting value d1. In the Bridging trial, in Section 2.1, a design is represented

by the efficacy thresholds z1:T , while V specifies a bound on type II/I error rates for

these thresholds under fixed hypotheses.

The simulated annealing algorithm generates a Markov sequence of designs dt from

the set of designs which satisfy V [38]. At each iteration, the algorithm generates a

design d⋆ ∈ o−1(V ) from a proposal distribution gt with values of d⋆ in a neighborhood

of the current state of the Markov chain dt. The chain selects dt+1 = d⋆ with probabil-

ity wt or otherwise sets dt+1 = dt with probability 1−wt. The acceptance probability

wt is an increasing function of the difference of expected utility (U(d⋆)− U(dt)) ∗ λt,

where λt is an increasing multiplier. The optimal design is approximated by the design

which attained the highest expected utility. Details are outlined in Algorithm 2.
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Algorithm 2 Simulated annealing for constrained optimal designs

1: set t = 1

2: Select an initial design dt ∈ D with operating characteristics o(dt) in V

3: Compute the expected utility U(dt) of the design dt

4: for t equal to 1, · · · , T do

5: Generate a design d⋆ ∼ gt from a neighborhood B(dt, ϵt) ∩ V of dt
6: Compute ∆t = U(d⋆)− U(dt)

7: Compute the acceptance probability wt = min(1, exp{∆tλt})

8: Generate U ∼ U(0, 1) and select dt+1 = d⋆ if ∆t ≤ U and dt+1 = dt otherwise.

9: end for

10: Return: d̂c−max = argmaxd∈{d1,...,dT } U(d)

3.2 A Bootstrap Scheme for Controlling Type I Error Rates

We describe a bootstrap algorithm for combining Bayesian designs with frequentist

analyses. The algorithm is a variation of the bootstrap scheme proposed in [30] for

computing confidence intervals and is summarized below in Algorithm 3. The pro-

cedure is implemented separately for each treatment arm k, and tests the presence

of a treatment effect for experimental arm k, with null hypothesis Hk. First, based

on the data generated by the adaptive trial T , and for a fixed arm of interest k, a

test statistics Zk is computed. In the TB trial [10] we use the standardized differ-

ence between the culture conversions proportions of experimental arm k and control

therapy. Second, we compute for each arm k′ consistent estimators of the outcomes

distributions F̂k′ under the null hypothesis Hk of no treatment effect for arm k. In

the TB study for example this includes estimation of (a) the response probabilities for

the surrogate endpoint; and (b) the conditional response probabilities for the primary

endpoint, given a positive and negative early outcome. A consistent estimator of the

accrual rate is also computed. In the TB trial response probabilities and the accrual

rate will be estimated by sample averages and observed accrual rates. Third, to test

Hk, we simulate t = 1, · · · , T adaptive trials Tt, with the same stopping rules and
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tuning parameters as used in the actual trial. For the t-th simulated trial, patients

enter the trial according to the estimated arrival rate, and each patient assigned to

the control or experimental arms responds to therapies with probability identical to

the estimates F̂ . 1 Note that patients respond therefore to treatment k across the T

simulations with probabilities that might be different from those observed in the trial

because simulations have to be consistent with the null hypothesis Hk that we test.

For each simulated trial Tt we then obtain a statistics Z(t)
k , which represents approxi-

mately a draw from the null distribution under Hk. We finally estimate the p-value as

the proportion of simulated trials with statistic Z(t)
k larger than the observed statistics

Zk. Lastly, the null hypothesis for arm k is rejected when the p-value is below the

pre-specified level α. See Algorithm 3 for details.

Algorithm 3 A Bootstrap algorithm for testing treatment efficacy of therapy k.
1: Input: A design d and a trial T

2: Input: The experimental arm k and hypothesis Hk which should be tested

3: Compute the statistics Zk for arm k
4: Estimate the accrual rate of the trial by λ̂

5: Estimates of the outcome distributions for each arm k′ under Hk by F̂k′

6: for t in 1 to T do

7: Simulate a trial Tt under d with accrual rate λ̂ and outcome distributions F̂k′

8: Compute the statistics Z(t)
k = Zk(Tt)

9: end for

10: reject Hk at level α if p̂k =
1
T

∑T
1 I(Z(t)

k > Zk) ≤ α

3.3 Control of Type I Error Rates with Importance Sampling

Importance sampling has been recently used as an alternative approach to control the

type I error under a pre-specified threshold α in Wason and Trippa [39]. To simplify the

presentation we assume binary outcomes with response probabilities θ = (θ0, . . . , θK),

1There was a flaw in the sentence
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one for each of the K + 1 therapies. Let Z be a summary statistics that, similarly to

a p-value, evaluates evidence against a generic null hypothesis H0, with large values

indicating strong evidence against it. The approach is applicable to both Bayesian

and non-Bayesian adaptive randomization schemes, and is summarized in Algorithm

4. The algorithm iteratively simulates t = 1, · · · , T adaptive clinical trials varying

θ(t) at each iteration.The response probabilities θ(t) at each simulation t are generated

independently from a continuous distribution g, for instance a beta distribution. Each

simulated trial Tt is based on a different set of response probabilities θ(t) ∼ g, where g

is a conveniently selected distribution. Let Lθ(T ) be the likelihood of a trial T under

the adaptive scheme; this is the probability of a specific sequence of outcomes and

treatment assignments at a fixed value of the vector θ = (θ0, . . . , θK). We chose the

distribution g so that for each generated trial, the importance weights

w(Tt; θ) =
Lθ(Tt)∫

Lθ′(Tt)g(θ′)dθ′

can be straightforwardly computed. Standard importance sampling, using the above

weights, enables us to use the same draws {Tt} to approximate the distribution of Z

at any desired θ value (see step 5 of Algorithm 4). The second part of the algorithm

estimates the cut-off point z with the constraint that for every value θ consistent with

the null hypothesis H0 the inequality pθ(Z > z) < α holds. That is the cut-off point

z controls the type I error at the α level. The algorithm use a grid of values for θ and

selects z such that the estimated type I error rate – obtained by importance sampling

– across possible probabilities θ is bounded by a pre-specified α value.
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Algorithm 4 Importance Sampling for the control of type I error rates

1: Simulate T response probabilities θ(t) = (θ(t)0 , · · · , θ(t)K ) ∼ g(θ), t = 1, · · · , T

2: Generate a trial Tt under design d with patients response rates θ(t) for each t =
1, · · · , T

3: Compute the statistics Z(t), t = 1, · · · , T

4: For each trial t compute the importance weight

w(Tt; θ) =
Lθ(Tt)∫

Ls(T )g(s)ds

5: Approximate the type I error for the threshold z at θ by

p̂θ(Z > z) =
T∑

t=1

w(Tt; θ)∑
ℓ w(Tℓ; θ)

× I(Z(t) > z)

6: Compute ẑα = min{z : p̂θ(Z > z) ≤ α for all θ in H0}

4 Summary

Clinical trials are evolving from traditional two-arm studies in large heterogeneous pa-

tient populations towards studies with many subpopulations, multiple research ques-

tions and substantial correlative analyses [18]. Traditional frequentist and Bayesian

designs are often challenged by these new directions, which demand designs which

are applicable in a variety of settings, and can be tailored towards specific research

questions[15, 8]. Bayesian designs, which enable the use of explicit or implicit utilities

u and prior probabilities π to incorporate existing information in the design, can be

tailored to specific study purposes [4, 34]. Clinical investigators and medical journals

are typically familiar with frequentists measures of evidence. Bayesian testing us-

ing Bayesian factors or posterior probabilities, while based on coherent foundational

axioms, can be difficult to communicate to these audiences. In addition regulatory

agencies, for instance the US Food and Drug Administration, continue to make sys-

tematic use of frequentists testing principles for drug approval and practice changing

recommendations.
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We outlined several applications to clinical trial designs and presented algorithms

for the implementation of the proposed approach. The hybrid consists of a Bayesian

design followed by a frequentist analysis Etzioni and Kadane [16]. The use of Bayesian

designs is motivated by the desire to optimize the acquisition of information about

the clinical utility of therapies by incorporating available prior knowledge and using

response-adaptive assignments rules. The use of frequentists analysis is motivated by

the desire to communicate results of clinical trials to the medical community, phar-

maceutical companies and regulatory authorities using widely accepted frequentists

metrics.
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