library(survIDINRI)
D=subset(pbc, select=c("time","status","age","albumin","edema","protime","bili"))
D$status=as.numeric(D$status==2)
D=D[!is.na(apply(D,1,mean)),] ; dim(D)
## [1] 416 7
head(D)
## time status age albumin edema protime bili
## 1 400 1 58.76523 2.60 1.0 12.2 14.5
## 2 4500 0 56.44627 4.14 0.0 10.6 1.1
## 3 1012 1 70.07255 3.48 0.5 12.0 1.4
## 4 1925 1 54.74059 2.54 0.5 10.3 1.8
## 5 1504 0 38.10541 3.53 0.0 10.9 3.4
## 6 2503 1 66.25873 3.98 0.0 11.0 0.8
outcome=D[,c(1,2)]
covs1<-as.matrix(D[,c(-1,-2)])
covs0<-as.matrix(D[,c(-1,-2, -7)])
head(outcome)
## time status
## 1 400 1
## 2 4500 0
## 3 1012 1
## 4 1925 1
## 5 1504 0
## 6 2503 1
head(covs0)
## age albumin edema protime
## 1 58.76523 2.60 1.0 12.2
## 2 56.44627 4.14 0.0 10.6
## 3 70.07255 3.48 0.5 12.0
## 4 54.74059 2.54 0.5 10.3
## 5 38.10541 3.53 0.0 10.9
## 6 66.25873 3.98 0.0 11.0
head(covs1)
## age albumin edema protime bili
## 1 58.76523 2.60 1.0 12.2 14.5
## 2 56.44627 4.14 0.0 10.6 1.1
## 3 70.07255 3.48 0.5 12.0 1.4
## 4 54.74059 2.54 0.5 10.3 1.8
## 5 38.10541 3.53 0.0 10.9 3.4
## 6 66.25873 3.98 0.0 11.0 0.8
t0=365*5
x<-IDI.INF(outcome, covs0, covs1, t0, npert=200) ;
IDI.INF.OUT(x) ;
## Est. Lower Upper p-value
## M1 0.090 0.052 0.119 0
## M2 0.457 0.340 0.566 0
## M3 0.041 0.025 0.062 0
M1 indicates IDI
M2 indicates NRI
M3 indicates Median difference
IDI.INF.GRAPH(x) ;