
C. Contribution to Science
C.1. Familial Risk Assessment. Risk evaluation to identify individuals who are at greater risk of cancer as a
result of heritable pathogenic variants is an essential component of individualized strategies for prevention and
early detection. Initially in collaboration with Don Berry and now as part of the BayesMendel lab which I co-lead
with Danielle Braun, we developed a general approach, algorithms and software for familial risk prediction in
cancer. Using principles of Mendelian genetics, Bayesian probability theory, and variant-specific knowledge, our
models derive the probability of carrying a pathogenic variant and developing cancer in the future, based on family
history. The BayesMendel lab models include BRCAPRO, MMRpro, MelaPro, PancPro and PanelPro. They have
been validated and are employed by various widely used clinical softwares including CancerGene, CancerGene
Connect, CRA Health, Progeny, MagView, CancerIQ and others. CancerGene alone has more than 4,000 users
in more than 75 countries, and CRA Health has more than 15,000 users per month. Through this work I acquired
extensive experience in the methodology, validation, informatics, implementation and primary care use of familial
risk prediction models. Our latest tool is the PanelPro model, based on novel methodological and computational
approaches for familial risk prediction, which allowed us to produce the first tool that consider all major cancer
syndromes together.
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C.2. Somatic Mutation Analysis. In the late 2000’s the availability of the human genome sequence and progress
in sequencing and bioinformatic technologies have enabled genome-wide investigations of somatic mutations in
human cancers. Pioneering studies were performed at Johns Hopkins in the lab co-led by Vogelstein, Kinzler and
Velculescu. I have been the primary statistician for some of these studies, including roles as one of the senior
authors for the first genome-wide somatic mutation analyses in cancer and for the first genome-wide multi-modal
analysis integrating somatic mutations with other types of genetic alterations (Leary et al. 2008). In subsequent
related work with (then) postdoctoral fellow Cristian Tomasetti, we formulated a mathematical model for the evo-
lution of somatic mutations in which all relevant phases of a tissue’s history are considered. The model made the
prediction, validated by our empirical findings, that the number of somatic mutations in tumors of self-renewing
tissues is positively correlated with the age of the patient at diagnosis. Importantly, our analysis indicated for the
first time that the majority of somatic mutations in certain tumors of self-renewing tissues occur before the onset
of neoplasia, which is the premise of current mutational signature analysis. Lastly, the model also provides for
the first time a way to estimate the in vivo tissue-specific somatic mutation rates in normal tissues, leveraging
sequencing data of tumors.
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C.3. Replicability. Cancer genomics has been facing an important challenge about obtaining consistent results
across studies aimed at answering the same scientific question (replicability). In cancer biology and its clinical
translation, replicability concerns subtypes (clusters) and predictive / prognostic scores (classification and regres-
sion). Since the mid 2000’s I developed new concepts and tools for elucidating cross-study replicability, beginning
with methods for subtype validation and for selection of replicable features in unsupervised settings (integrative
correlation). In the 2010’s, in Waldron et al. , considering the case study of ovarian cancer prognosis, we designed
and executed the first comprehensive analysis of cross-study replicability of prognostic models that are based on
genomic data. We adopted the rigor of systematic reviews of clinical trials to develop a blueprint for identifying
published prognostic models and evaluate 1) reimplementation as described by the original study, 2) performance
for prognosis of overall survival in independent data, and 3) performance compared with random gene signatures.
In the process we created data models, software and databases for multi-study analysis of gene expression.
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C.4. Multi-Study High Dimensional Analyses. Work in C.3 was the impetus to develop statistical learning
methods that train on multiple studies to achieve better replicability. In unsupervised setting, in Devito et al. we
extend factor analysis to multiple studies. For the first time, we can separately identify and estimate 1) factors
shared across multiple studies, and 2) study-specific factors.
Moving to supervised analyses, in Patil & Parmigiani we proposed a simple and general class of prediction models
for multi-study learning. The novelty of this approach consisted in optimally ensembling prediction models, each
of which is trained on one of the studies, with optimality criteria that reward generalizability beyond the original
training data. This approach provides new techniques compared to both the statistical and machine learning
literature. It can be used to address both desired and undesired variation, and to predict a new draw from one of
the available studies (similarly to multi-task learning) or a new study altogether (similar to domain generalization).
In parallel, we focused on data homogenization and remedial of batch effect, developing the ComBat-seq model
for remedial of batch effect in RNA-seq data. The article presenting this method is currently listed as ”the most
cited” on the Nucleic Acids Research Genomics and Bioinformatics website.
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C.5. Rational Decision Making in Health Care and Bayesian Analysis. My interests in machine learning for
familial risk and in high dimensional modeling for cancer genomics are driven by the desire to improve decision
making processes both before and after a cancer diagnosis. I take this motivation most seriously. Since the
early stages of my career I contributed scholarly work elucidating the quantitative basis for rational decisions in
health care, with special attention to information integration and to uncertainty quantification. This work began
with theoretical analysis of optimal cancer screening policies, and continued with complex microsimulation model
development, and contributions to assessment of uncertainty in decision and policy analysis. Methodologically I
am an expert in Bayesian decision theory. I published a book on ”Modeling in Medical Decision Making” and, with
L. Inoue, an award-winning text on “Decision Theory”.
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