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Abstract

Background: Single-cell RNA-sequencing technologies provide a powerful tool for systematic dissection of cellular
heterogeneity. However, the prevalence of dropout events imposes complications during data analysis and, despite
numerous efforts from the community, this challenge has yet to be solved.

Results: Here we present a computational method, called RESCUE, to mitigate the dropout problem by imputing
gene expression levels using information from other cells with similar patterns. Unlike existing methods, we use
an ensemble-based approach to minimize the feature selection bias on imputation. By comparative analysis of
simulated and real single-cell RNA-seq datasets, we show that RESCUE outperforms existing methods in terms of
imputation accuracy which leads to more precise cell-type identification.

Conclusions: Taken together, these results suggest that RESCUE is a useful tool for mitigating dropouts in
single-cell RNA-seq data. RESCUE is implemented in R and available at https://github.com/seasamgo/rescue.
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Background
Single-cell RNA-seq (scRNAseq) analysis has been
widely used to systematically characterize cellular het-
erogeneity within a tissue sample and offered new
insights into development and diseases [1]. However, the
quality of scRNAseq data is typically much lower than
traditional bulk RNAseq. One of the most important
drawbacks is dropout events, meaning that a gene which
is expressed even at a relatively high level may be
undetected due to technical limitations such as the
inefficiency of reverse transcription [2]. Such errors are
distinct from random sampling and can often lead to
significant error in cell-type identification and down-
stream analyses [3].
Several computational methods have been recently

developed to account for dropout events in scRNAseq
data, either directly imputing under-detected expression
values [4, 5], adjusting all values according to some
model of the observed expression [6, 7] or implicitly
accounting for missingness through the extraction of
some underlying substructure [8]. Here we focus on

directly imputing the missing information. In this
context, imputation assumes that cells of a particular
classification or type share identifiable gene expression
patterns. Additionally, that missingness varies across
cells within each type so that it is useful to borrow infor-
mation from across cells with similar expression pat-
terns, or cell neighbors. However, a challenge is that cell
neighbor identification also relies on dropout-‘infected’
data, thus creating a chicken-and-the-egg problem. This
problem has not been addressed in existing methods.
To overcome this challenge, we develop an algorithm

called the REcovery of Single-Cell Under-detected
Expression (RESCUE). The most important contribution
of RESCUE is that the uncertainty of cell clustering is
accounted for through a bootstrap procedure, thereby
enhancing robustness. We apply RESCUE to simulated
and biological data sets with simulated dropout and
show that it accurately recovers gene expression values,
improves cell-type identification and outperforms exist-
ing methods.

Results
Overview of the RESCUE method
To motivate RESCUE, we note that cell-type clustering
is typically restricted to a subset of informative genes,
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such as the most highly variable genes (HVGs) across all
cells [9]. If there is bias in the expression patterns of
these HVGs, then clustering will be affected. To
illustrate this, we consider an idealized example of 500
cells containing five distinct cell types of near equal size.
The introduction of dropout events distorts the pattern

of gene expression and confounds clustering results by
cell type (Fig. 1a). Our solution to this problem is to use
a bootstrap procedure to generate many subsets of
HVGs. Based on each subset of genes, we cluster cells
based on the corresponding gene expression signatures
and created an imputation estimate by within-cluster

a
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b

Fig. 1 A motivation of the RESCUE imputation pipeline illustrated with a hypothetical example of simulated data. a Heatmap of a log-
transformed normalized expression matrix with cell type clustering affected by dropout. b t-SNE visualizations of cell clusters determined
with the principle components of many subsamples of informative genes, and a histogram showing the bootstrap distribution of the
within-cluster non-zero gene expression means for one missing expression value in the data set. c Heatmap of the expression data after
imputing zero values with a summary statistic of the bootstrap distributions
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averaging (Fig. 1b). The final imputed data set provides
an accurate representation of the cell types and their
gene expression patterns (Fig. 1c).
Of note, this approach circumvents a number of limita-

tions inherent to current imputation methods reviewed by
Zhang and Zhang [10], as we’ve made no assumptions of
the dropout generating mechanism or number of cell
types and observed expression values are preserved.
More explicitly, given a normalized and log-

transformed expression matrix, the RESCUE algorithm
proceeds as follows. First, we consider the most inform-
ative features for determining cell neighbors. In this
case, the most variable genes across all cells. We take a
greedy approach and retain the top 1000 HVGs. The
influence of any one group of genes is mitigated by
repeatedly subsampling a proportion of HVGs with
replacement, using the standard bootstrapping proced-
ure [11] but with an additional clustering step for each
estimator. Within each subsample, the gene expression
data are standardized and reduced to their principal
components to inform clustering. In principle, any
single-cell clustering method [12] can be applied. As an
example, here we use the shared nearest neighbors
(SNN), which has been shown to be effective in numer-
ous studies [13, 14]. As similar cells are assumed to
share expression patterns, we calculate the average
within-cluster expression for every gene in the data set
as sample-specific imputations. In the end, the sample-
specific imputation values are averaged for a final imput-
ation. The mathematical details of the algorithm are
described in the Methods section.

RESCUE recovers under-detected expression in simulated
data
As a ground truth is not generally known with experimen-
tal data, we first considered simulations for validation of
RESCUE. Count data and dropout were simulated for a
benchmark data set reflective of our hypothetical motivat-
ing example using generalized linear mixed models imple-
mented by Splatter [15]. These data consisted of 500 cells
having 10,000 genes and were composed of five distinct
groups with equal probabilities of membership. Approxi-
mately 40% of observations had a true simulated count of
0 and approximately 30% of the overall transcripts counts
experiencing additional dropout. To quantify the effect of
dropout and imputation, the absolute count estimation
error was evaluated relative to the simulated true counts.
This measure is presented as the percent difference from
the true counts over the data containing dropout so that
0% is best and greater than 100% indicates additional
error. We used t-distributed stochastic neighbor embed-
ding (t-SNE) [16] to visualize the data and determine the
quality and separation of clusters by cell types. Addition-
ally, we evaluated predicted cell type labels by computing

their Shannon entropy, normalized mutual information
(NMI), adjusted Rand Index (ARI), and Jaccard Index
against their known cell type labels. The outcomes for
these measures are presented as the percent improvement
over the data containing dropout so that 100% is best and
0% is no improvement.
Missing counts showed marked improvement (Fig. 2a)

and RESCUE achieved a median reduction in total relative
absolute error of 50% (Fig. 2b), indicating that our method
can accurately recover the under-detected expression at a
broad level. To ensure that missing expression values im-
portant to the classification of cell types were recovered,
we considered the relative error for the top two most sig-
nificantly differentially expressed marker genes for each
cell type determined using the true counts (MAST [17]
likelihood ratio test p <1e − 5; log-fold change >0.5).
RESCUE achieved a median reduction in total relative ab-
solute error of 50% (Fig. 2c). Additionally, RESCUE
showed clear visual (Fig. 3a-c) and quantitative (Fig. 3f)
improvement of cell-type classification. All five cell types
were completely separated and clustering outcomes
equivalent to the full data with a 0% difference from the
true labels.
For comparison, we also imputed the dropout data

with DrImpute [5] and scImpute [4], two recently devel-
oped methods designed to estimate under-detected
expression values. Both methods reduced the relative ab-
solute error (Fig. 2b) and DrImpute consistently reduced
the relative absolute error across all 10 marker genes
(Fig. 2c), but to a lesser degree than RESCUE. scImpute
did not achieve the same reduction in error, instead
having a noticeable increase in error for 6 of the 10
genes, possibly due to an overestimation of some counts
(Fig. 2a). Both methods showed notable visual (Fig. 3d, e)
and quantitative (Fig. 3f) improvement of clustering
outcomes over the data set containing dropout, greater
than 30% for DrImpute and greater than 90% for scIm-
pute, but not to the same extent as RESCUE.
These outcomes were replicated in additional simulations

(Additional file 1: Figure S1, Additional file 2: Figure S2,
Additional file 3: Figure S3 and Additional file 4: Figure S4)
that considered variations in cell group size, the number of
cell types, degrees of differential expression, and the preva-
lence of dropout events outlined in Additional file 14: Table
S1. Collectively, the simulations suggest that RESCUE is
effective at recovering under-detected expression and out-
performs existing methods in terms of estimation bias and
clustering outcomes with regard to cell-type classification.

RESCUE recovers differential expression across mouse cell
types
To extend the application of RESCUE to a real data set
where the underlying truth and mechanism are not fully
known, we made use of the Mouse Cell Atlas (MCA)
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Microwell-seq data set [18]. Previous studies have identi-
fied 98 major cell types across 43 tissues [19]. We ran-
domly selected four tissues — uterus, lung, pancreas and
bladder — each of 1500 cells to test the performance of
RESCUE. For each tissue, we only retained the cells that
can be classified in a major cell-type for evaluation pur-
poses. Since it is impossible to distinguish dropout events
from biologically relevant low expression in this real data-
set, we artificially introduced additional dropout events by
using Splatter [15]. More than 10% of additional dropouts
were introduced for each tissue. Genes having less than
10% of counts greater than zero within at least one cell
type were removed. As a result, the data matrix for each
tissue contained approximately 98% zero counts.
Missing counts showed a global median improvement

of only 3% after imputing the uterus tissue data (Fig. 4a).
However, RESCUE achieved a notable reduction of

relative error across several of the most differentially
expressed significant cell-type specific marker genes
determined through a differential expression analysis
(MAST [17] likelihood ratio test p <1e − 5; log-fold
change >2) of the original counts (Fig. 4b). In particular,
the Ccl11 and Mmp11 genes had a median reduction in
error of 42 and 68%, respectively. This recovery of
expression at a broad level and across marker genes was
further replicated across the other three tissue types
(Additional file 5: Figure S5, Additional file 6: Figure S6
and Additional file 7: Figure S7). We also evaluated the
recovery of log-fold changes (LFCs) in gene expression
for cell-type specific genes that went undetected in the
data containing simulated dropout. RESCUE recovered
53 of the 77 significant genes in the uterus tissue
(Additional file 15: Table S2), with six of these being
the 2 most significant differentially expressed marker genes
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Fig. 2 Estimation bias after imputing simulated data (Additional file 14: Table S1; Primary). a Scatter plots compare the true transcript counts
(x-axis) to estimated counts (y-axis) for those lost to dropout. The red diagonal indicates unbiased estimation. b The percent absolute error for all
missing counts. c The percent error for counts specific to the top ten marker genes across cell types. The dashed lines indicate 100% error, or no
improvement over dropout
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for each cell type (Fig. 4c). Similar results were achieved for
the bladder, lung and uterus tissue data where LFC patterns
were recaptured for a majority of each of the top two
marker genes across cell types (Additional file 5: Figure S5,
Additional file 6: Figure S6 and Additional file 7: Figure S7).
In contrast, other imputation methods achieved

improvements in parts but not all of these elements. scIm-
pute did not noticeably reduce count bias due to dropout
events but recovered 100 marker genes across the cell
types of each tissue (Additional file 15: Table S2).
DrImpute had more similar results to RESCUE, redu-
cing the overall relative error and error across marker
genes, though not to the same degree. For example,
the Ccl11 and Mmp11 genes had a median reduction
in error of 64 and 80%, respectively (Fig. 4b). DrIm-
pute also recovered an additional 5 marker genes in
the lung tissue data (Additional file 15: Table S2) and

the second most significant differentially expressed
marker, Wfdc2, for urothelium cells in the bladder tis-
sue, where RESCUE did not (Additional file 5: Figure
S5c). However, RESCUE managed to recover several
other markers in each tissue that were not detected
after imputing with the other methods, including top
markers Mdk (Fig. 4c), H2 − Ab1 and Myl9 (Additional
file 5: Figure S5c), Ms4a6c (Additional file 6: Figure
S6c) and Gsn (Additional file 7: Figure S7c). Together
with the reduction in count bias, these results indicate
that RESCUE can recover patterns of differential ex-
pression with regard to cell-type specific marker genes
in the presence of heavy dropout.

RESCUE improves cell-type classification of mouse cells
To test whether RESCUE is useful for improving the
accuracy of cell type identification, we overlaid the known

a b c

d e f

Fig. 3 Data visualization and cell-type clustering before and after imputing simulated data (Additional file 14: Table S1; Primary). a t-SNE
visualization of the original data labeled by cell type. b t-SNE after dropout c t-SNE after application of RESCUE. d t-SNE after application
of scImpute. e t-SNE after application of DrImpute. f The percent improvement after imputation over the data containing dropout in
similarity measures between known cell types and clustering results
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cell-type annotation on t-SNE maps reconstructed from
original, dropout, and imputed data (Fig. 5). RESCUE
greatly enhanced the visual quality of the data clusters in
the uterus tissue (Fig. 5a-c), clearly separating all six cell
types. In particular, the endothelial cells and osteoblasts
were indistinguishable from the other cells after dropout
but visually distinct after imputation. A small number of
cells were inseparable across cell types. However, this is
seen in the original data and may be due to other sources
of bias. RESCUE also improved clustering outcomes with
regards to all considered measures (Fig. 5f). We compared
estimated cell clusters with the cell-type labels identified
using the full 60,000 cell data set in the original MCA study
[19]. The relative entropy between these labels improved by
27%, NMI by 53%, ARI by 68%, and the Jaccard Index by
49%. To test if the improvement is robust, we
repeated the analysis for three additional tissues:
bladder (Additional file 5: Figure S5), lung (Additional
file 6: Figure S6) and pancreas tissues (Additional file 7:
Figure S7). In all cases, we observed varying degree of
improvement of RESCUE compared to existing methods.
Some of the more similar cell types were inseparable

after additional dropout. For example, the dendritic cells
and monocytes in the lung tissue are partly distinct in the

original data but cluster together and remain indistin-
guishable after imputation (Additional file 9: Figure S9c).
This could be due to a complete loss of some information
distinguishing these cells, as differential expression for top
dendritic cell markers was not recovered (Additional file 6:
Figure S6c). However, we see this again with the
dendritic cells and macrophages in the bladder tissue
(Additional file 8: Figure S8c). These three immune cell
types are known to greatly overlap in both functional
characteristics and patterns of gene expression [20],
confounding their separate classification. Thus, this
event may simply be confined to similarly expressing
immune cells in the presence of other dissimilar cell
types. We do observe that the immune cells of both
tissues become visibly distinct from other cell types
with imputation, indicating a meaningful improvement
in overall cell-type classification.
Other methods underperformed RESCUE in these

outcomes. scImpute increased the similarity indexes
for the uterus and bladder tissue data but did not
reduce entropy or increase the NMI between the
known cell labels or improve clustering outcomes
across the other tissue types (Fig. 5f ). Visualization
of the data with t-SNE did not improve either (Fig.
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Fig. 4 Estimation bias and recovery of differential expression after imputing the MCA uterus tissue data. a The percent absolute
error for all missing counts. b The percent error for counts specific to top marker genes across cell types. Above 100% indicates no
improvement over the data containing simulated dropout. c Log-fold changes in the two most differentially expressed marker genes
for each cell type that went undetected after dropout
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5d, Additional file 8: Figure S8, Additional file 9:
Figure S9 and Additional file 10: Figure S10). In
contrast, DrImpute showed visible improvement
across all measures predicted clustering quality for
the uterus and bladder tissue data but to a lesser de-
gree than RESCUE; this was not seen with the pan-
creas and lung tissue data (Fig. 5f ) and was not fully
apparent in visualization of the data with t-SNE (Fig.
5e, Additional file 8: Figure S8, Additional file 9:
Figure S9 and Additional file 10: Figure S10). We
conclude that RESCUE improves clustering outcomes
and the accuracy of cell-type classification, while
outperforming other existing methods in the pres-
ence of dropout.

Discussion
Single-cell experiments and analyses have greatly im-
proved over the last decade and are now considered an
essential component in many research areas. However,
their focus has primarily been at the transcriptome
level, which is only one of many regulatory layers that
explains single-cell heterogeneity. Recently, additional
high-throughput single-cell sequencing protocols have
been developed for analyzing patterns in DNA methyla-
tion and chromatin accessibility, such as the single-cell
assay for transposase-accessible chromatin (ATAC-seq)
[21]. These data are unique to scRNA-seq data but
present similar challenges due to high amounts of back-
ground noise and low read-coverage [22]. The RESCUE

a b c

d e f

Fig. 5 Data visualization and cell-type clustering before and after imputing the MCA data. a t-SNE visualization of the original uterus tissue data
labeled by cell type. b t-SNE after dropout c t-SNE after application of RESCUE. d t-SNE after application of scImpute. e t-SNE after application of
DrImpute. f The percent improvement after imputation over the data containing dropout in similarity measures between known cell types and
clustering results for all four tissue types
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method may not be directly applicable to these other
data but, given its simplicity and straightforward
approach, we place interest in future extensions.

Conclusions
The identification of cell types is at the core of scRNA-
seq data analysis but confounded by high rates of under-
detected expression that bias informative patterns of
gene expression. RESCUE effectively recovered the infor-
mation lost to these dropout events in both simulations
and publicly available data with additional simulated
dropout. Count error and feature selection bias were
significantly reduced and differential expression patterns
important to cell-type classification were recovered,
significantly improving downstream cell-type clustering.
This was achieved through two important additions to
the literature. First, a solution to the inter-dependency
of cell-type classification and estimation of gene expres-
sion by subsampling informative genes. Second, retain-
ing the single-cell nature of the data without strict
model assumptions by applying the bootstrap across all
possible clustering outcomes. To improve computation
time RESCUE optionally implements the bootstrap itera-
tions in parallel, with a reduction in total time by up to
half when using 10 cores (Additional file 11: Figure S11).
Taken together with the above, we believe that RESCUE
can be a useful addition to the current and developing
toolsets used in the analysis of single-cell data.

Methods
Simulating single-cell RNA-sequencing data
Simulated data were generated using Splatter. Splatter
implements a gamma-Poisson hierarchical model, an
extended reparameterization of the common negative
binomial model. Briefly, gene expression means are sam-
pled from a gamma distribution and subsequent cell
counts from a Poisson distribution [15]. Alone, this
model would ignore many of the unique characteristics
of scRNA-seq data, such as outlier genes and zero-
inflation. These are accounted for by sampling additional
parameters from a variety of statistical distributions that
are then utilized throughout the hierarchical structure of
the Splatter model. We considered three scenarios
outlined in Additional file 14: Table S1, with remaining
parameters kept at their default values. If any genes were
to have zero counts across all cells, we removed them
from that data set before imputation [23, 24].

Mouse cell atlas data and processing
We obtained the Mouse Cell Atlas (MCA) data set of
60,000 single cells from the Gene Expression Omnibus
under accession code GSE108097 [18]. Our selected 4-
tissue subset was filtered by cell types to those having at
least 50 cells present in each data set, with this threshold

being lowered to 25 cells for the bladder tissue in order
to capture more cell types. In this way, we reduced bias
in the final clustering analysis due simply to rare cell
types. We also filtered genes with a very low detection
threshold across the remaining cells (<10 % nonzero
counts within every remaining cell type). Both the simu-
lated and sequenced data were processed with the Seurat
pipeline implemented in R [25] using default parameters
for quality control, normalization (log-transformed
counts-per-million), UMI regression of the MCA data,
and scaling (z-score).

Generating dropout events
The Splatter model generates dropout in a manner in
consonance with the findings of Hicks, Townes [3].
Specifically, dropout probabilities are defined by use of

the logistic function f ðxÞ ¼ ð1þ e−aðx−x0ÞÞ−1 fit between
the log means of the normalized counts and the propor-
tion of under-detected counts. Dropout is then gener-
ated with these probabilities and counts replaced by zero
as such events occur. These methods are implemented
in the R package Splatter [15]. We fixed the dropout.-
midpoint location parameter x0 = 0 for all data sets.
Dropout for the simulated data was generated with the
parameters given in Additional file 14: Table S1. Data
specific parameters for the MCA data were estimated
using the splatEstimate function. The dropout.shape
scale parameter was fixed at a = − 1 and the model
parameter dropout.type to ‘experiment’. We then gener-
ated an index of dropout events using the splatSimulate
function with cell type probability parameter group.prob.
set to the proportion of known cell types. Counts
sampled in this way were changed to zero. This resulted
in more than 10% additional dropout across each of the
MCA tissues we evaluated.

Mathematical details of RESCUE
RESCUE takes as input a normalized and log-transformed
gene expression matrix. The algorithm then proceeds as
follows:

1. HVGs were determined with the
FindVariableGenes function in the R package
Seurat [25]. Seurat separates the genes by their
average expression into twenty bins, then
thresholds and ranks genes within each bin by
the ratio of their variance and mean. We filtered
genes to have an average non-zero log-
transformed expression and took the top-ranked
1000 remaining genes.

2. Simulations across multiple proportions p of
HVGs suggested a window in which the variation
of informative clustering outcomes was optimal
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(Additional file 12: Figure S12). We fixed p at a
conservative 0.6 within this window to capture a
simple majority of HVGs and ensure that the
expression pattern of each subsample was
representative of cell type but flexible across
all HVGs.

3. Cell clusters are also determined via the Seurat
package with the FindClusters function. This
implementation of SNN borrows heavily from
Levine, Simonds [14] and first draws a KNN
graph over the Euclidean distance of informative
principal components. We determined the
number of principal components by examining
elbow plots computed with the full set of 1000
HVGs and these may be increased as desired.
The graph edge weights are refined by the
Jaccard distance between local neighborhoods
and groups of highly connected cells are
partitioned by the Louvain modularity
optimization method proposed by Blondel,
Guillaume [26]. This requires a resolution
parameter as input to adjust the granularity of
the community partitions; greater than 1 induces
more clusters, while less than 1 induces fewer
clusters. We kept this parameter at a moderate
value of 0.9, the original authors suggested best
results for 0.6–1.2, but we experienced little
variation in results across this window and it may
be increased for large data sets where a greater
number of unique cell types are expected.

4. Expression averages are calculated for each cluster.
5. Steps 2–4 are performed N times to extrapolate

the distribution of expression averages across all
possible cell neighbors. We fixed N at 100 to
ensure consistency of the bootstrap after
evaluating these distributions under simulation.

6. Take ci to be a series of these estimated similar cell
cluster identities assigned to some cell c with cluster
size nci and for i = 1, …, N. Take some gene g having
cluster-specific expression vectors xgci for i = 1, …, N,
and denote its cluster-specific expression mean by
θgc. We define the estimated expression averages xgci
¼ n−1ci �P jxgci; j for j ¼ 1;…; nci . Then, statistics

computed with the estimator defined by

θ̂gc ¼
XN

i¼1

nci ∙xgci

( )

∙
XN

i¼1

nci

( )−1

are the bootstrapped mean expression estimates of θgc
for gene g in cell c. Zero counts are imputed with their
respective estimates and the algorithm ends.

Analysis with scImpute and DrImpute
scImpute initially clusters similar cells with KMeans
applied to a spectral decomposition of the data [27] to
reduce the computational effort of fitting a separate gen-
eralized linear mixed model to every sample, which takes
as input the expected number of cell states [4]. scImpute
performed better without informing the clustering algo-
rithm and so we fixed the initial clustering parameter ks
at 1. The authors state that this is fine as the method
chooses similar cells with a model-based approach at a
later step. Each data set was imputed before processing,
as the method takes counts as input.
DrImpute implements multiple applications of KMeans

clustering and correlation distances, suggesting a range of
numbers of clusters for the applications of KMeans that
are at least as large as the number of expected clusters [5]
(the default is 10:15). Let k be the number of known cell
types. We fixed the range of clusters for DrImpute to be
{k,…, k + 5}. All other parameters were fixed at their
default values.

Evaluation of clustering outcomes and marker genes
Principal component analysis, SNN clustering and t-SNE
visualization were implemented using The R package
Seurat [25]. The entire filtered set of genes present in
the data containing dropout was used for all evaluations.
We measured count bias by retaining cell library sizes
before imputation and applying an inverse function of
the log-transform normalization g−1(x) = {exp(x) − 1} ×
10−4 × library _ size. Log-fold changes and marker genes
were determined through a differential expression
analysis of the original filtered data with known cell-type
labels using the FindMarkers function in the R package
Seurat and MAST [17], a GLM method developed
specifically for scRNAseq data that models the cell
detection rate as a covariate. Genes were filtered by the
magnitude of their LFC (>2.0 for the MCA data, >0.5 for
the simulated data) and sorted by significance (likelihood
ratio test p <1e − 5). A subset of the most significantly
expressed marker genes, or top markers, were selected
from each cell type in the original data set if they also
went undetected in a subsequent analysis applied to the
data set containing dropout. Similarity measures for
predicted cell types were computed with the external_
validation function in the R package ClusterR [28].
SNN does not predict a fixed number of clusters,

instead producing a final number of clusters as a prod-
uct of the optimal community partitions. Yet most mea-
sures of clustering quality are sensitive to variations in
the number of unique clusters. Thus, it was necessary to
reduce larger numbers of predicted clusters to the num-
ber of unique cell types for a quantitative evaluation of
similarity to cell type labels. This was achieved by
merging predicted clusters with average-linkage of the
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Euclidean distance across the same number of principal
components used to inform the SNN clustering. The
need for this is seen in the MCA bladder tissue data set,
where the initial predicted clusters from the original data
seem to poorly match cell types according to the plotted
similarity measures (Additional file 13: Figure S13c).
However, the original data is quite clearly accurate
according to the t-SNE plots (Additional file 13:
Figure S13a) when contrasted against the known cell
labels (Additional file 8: Figure S8a).

Additional files

Additional file 1: Figure S1. Estimation bias after imputing simulated
data (Additional file 14: Table S1; Scenario 2). (a) . Scatter plots compare the
true transcript counts (x-axis) to estimated counts (y-axis) for those lost to
dropout. The red diagonal indicates unbiased estimation. (b) The percent
absolute error for all missing counts. (c) The percent error for counts specific
to the top ten marker genes across cell types. The dashed lines indicate
100% error, or no improvement over dropout. (PDF 1104 kb)

Additional file 2: Figure S2. Data visualization before and after
imputing simulated data (Additional file 14: Table S1; Scenario 2). (a) t-SNE
visualization of the original data labeled by cell type. (b) t-SNE after dropout
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