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[1] This study establishes a series of tests to examine the relative utility of nonlinear time
series analysis for oceanic data. The performance of linear autoregressive models and
nonlinear delay coordinate embedding methods are compared for three numerical and two
observational data sets. The two observational data sets are (1) an hourly near-bottom
pressure time series from the South Atlantic Bight and (2) an hourly current-meter time
series from the Middle Atlantic Bight (MAB). The nonlincar methods give significantly

better predictions than the linear methods when the underlying dynamics have low
dimensionality. When the dimensionality is high, the utility of nonlinear methods is
limited by the length and quality of the time series. On the application side we mainly
focus on the MAB data set. We find that the slope velocities are much less predictable than
shelf velocities. Predictability on the slope after several hours is no better than the
statistical mean. On the other hand, significant predictability of shelf velocities can be

obtained for up to at least 12 hours.
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1. Introduction

[2] Data available for even well-studied regions of the
ocean are very sparse both temporally and spatially. For
a host of applications, including those associated with
navigation, resource management, weather forecasting,
and national defense, we need, however, to be able to base
predictions of changes in ocean properties on these data
sets. Our work here is motivated by the desire to understand
how much we can predict, and for how long, from such
sparse data sets.

[3] Coastal oceanographers are interested in predicting
the strength and location of a shelf break front over the
course of a few days. We address the dynamics of the shelf
break front in the Middle Atlantic Bight (MAB). Many
past studies have focused on the temporal and spatial
variability of this front [e.g., Flagg and Beardsley, 1978;
Gawarkiewicz, 1991; Lozier and Gawarkiewicz, 2001;
Lozier et al., 2002; Fratanioni et al., 2000] in an effort to
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investigation is to measure the predictability of the shelf
break front, an analysis distinct from a description of its
variability. We ascertain that the shelf velocities are more
predictable than the corresponding slope velocities.

[4] Standard methods of prediction are based on linear
methods in the analyses of time series [e.g., Penland and
Sardeshmukh, 1995; Emery and Thomson, 1998], and the
basic technique here uses an autoregressive model. The real
system is, however, nonlinear, being driven by an underly-
ing fluid flow. We apply therefore a nonlinear prediction
method based on phase space reconstruction and ask the
question as to whether this offers any improvement over the
standard linear prediction technique. As will be explained in
section 5, the utility of such an approach is limited by the
fact that it requires data length to be longer than the duration
of most existing data records. This is borne out in the main
case we consider of prediction around the shelf break front
of the Middle Atlantic Bight.

[s] Nonlinear techniques derive from recent advances in
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tion. As a simple example: Imagine that an observed variable
is a sinusoidal function of time. Variability can be quantified
as the amplitude of the sinusoidal function. If one uses this
sinusoidal function to predict future values, however, the
prediction errors would always be zero. Predictability is thus
associated with skill at uncovering the rules governing the
evolution of a time series. Ideally, an understanding of the
local dynamics produces those goveming rules. However,
since we do not yet understand the dominant physical
mechanisms that govern the shelf and slope waters of the
Middle Atlantic Bight, past observations can provide an
approximation to the rules, allowing for a measure of
predictability. In order to isolate the limits and potential of
past observations to predict future states, this study assesses
predictability based solely on measurements. The measure-
ments that are used for this assessment are from time series
collected in the region, as will be detailed in section 3.4.

[7] As asecond consideration, aimed at understanding the
usefulness of nonlinear techniques in geophysical predic-
tion, we seek to obtain an idea of the cutoff at which
nonlinear techniques cease to be useful. Two main variables
are relevant here: length of time series available and
dimension of the underlying system. In an observational
data set the latter is most likely not known and cannot even
be surmised. While the former is obviously known, a
characteristic length for the time series from which the
dynamics can be usefully deduced may not be known.
Furthermore, it is important that the sampling rate of the
data is not an inherent harmonic of the dynamics; otherwise,
the subsequent analysis will be strongly subject to aliasing
errors. To understand where, and why, nonlinear methods
might be useful in a geophysical setting, we introduce a
sequence of data sets with increasing complexity. These
derive from a standard low-dimensional model, namely, the
Lorenz system, a shallow water model, and an observational
data set from the South Atlantic Bight.

[8] We are not attempting here to use information from
the underlying physics in any way. Data assimilation has
emerged as a key technique for prediction that incorporates
data into models to improve predictability. The predictive
capability for data assimilation—based schemes is, however,
constrained not only by the quality and quantity of data but
also by incomplete model physics, unknown initial and
boundary conditions, and parameterizations. We are restrict-
ing ourselves here to the extreme case where only data are
taken as a basis of prediction with the aim of addressing the
question: What can be predicted purely from data, and
under what circumstances?

[9] An ovewww of our approach is given in section 2.
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this function is linear, we can use a linear autoregressive
(AR) model for prediction [e.g., see Brockwell and Davis,
1991, Emery and Thomson, 1998]. On the other hand, if we
have reason to believe that the function is nonhinear, it is
difficult to select a global prediction model. However, a
globally nonlinear model can be approximated by a model
that has simple local structures. To construct such local
models, we use the delay embedding technique that has
recently been developed [e.g., see Ott et al., 1994; Abarbanel,
1996; Kantz and Schreiber, 1997]. Essentially, a delay
vector is constructed by intelligently combining the current
and past values in the time series, such that the evolution of
the time series can be represented as a function of delay
vectors. As an example of the basic concepts involved in the
delay embedding technique, consider an (unforced) double
pendulum system, in which the angles between the shafis of
the two pendulums and the vertical are denoted by 6,(¢) and
0:(f). The state of the system at any time ¢ is uniquely
specified by the two angles and the two angular velocities
dO,/dt and db,/dt. All future states are uniquely determined
once the present state is specified. Now suppose that we
have a time series of just one of the variables, say, 8,(¢),
spanning 0 < ¢t < 7. We can construct a delay vector [0,(7),
0T — 1), -, 00(T — (d — 1)1)], where the time delay T is
some multiple of the sampling interval in the time series and
the embedding dimension d is an integer. It follows from the
embedding theorem [Takens, 1981; Sauer et al., 1991] that
for sufficiently large d the delay vectors uniquely specify
the system state under a wide variety of conditions. This
information can then be used for the prediction of future
values. Details of this technique, such as the selection of the
embedding dimension and the time delay, will be discussed
in section 4.

[11] One of the objectives of this paper is to gain insight
into the utility and limitations of both linear and nonlinear
methods in the construction of prediction models for ob-
served time series. To achieve this goal, we address the
following two questions: (1) Do observed time series
contain structures that cannot be explained by linear mod-
els? (2) Can nonlinear models provide better predictions
than linear models? To answer the first question, we test
whether the observed time series can be differentiated from
other time series that are generated with the same linear
properties, a technique called surrogate data testing [ Theiler
et al., 1992; Smith, 1992; Schreiber and Schmitz, 2000].
The second question can be answered by applying both
linear and nonlinear prediction models to the observed time
series and then comparing their prediction errors. The
methods used for the surrogate data testing and the compu-
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Figure 1.
In Figures la—Ic, x, is unitless.

primary goals is the application of these methods to time
series from the Middle Atlantic Bight, considerable insight is
gained from the application of these methods to less com-
plicated systems and, for the Lorenz system and the shallow
water model, systems that are known to be nonlinear.

[13] Whereas the numerical data are noise-free, the ob-
servational signals are inevitably corrupted by instrument
and other errors. An important and practical question is how
sensitive the prediction methods are to measurement noise.
For the Lorenz system (which is the underlying model for
data set A to be discussed in section 3.1) it has been shown
that the prediction methods are still valid when the noise
level is 45% (M. Dodson et al., Noise sensitivity of simple
deterministic prediction model tested on Lorenz attractor
data, available at http:/gridlock.york.ac.uk/papers/noise.
doc, 2004). For other systems the admissive noise level
obviously can change depending on the details of the
underlying dynamics. Statistical methods have been devel-
oped to incorporate the effects of observational noise and
estimation error [Casdagli et al., 1991; Grassberger et al.,
1993]. Typically, this requires some knowledge of some
statistical properties of the noise. It is not a simple matter,
however, to propcrly model the noise in the instrument; Is it
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Representative time series from (a) data set A, (b) data set B, (c) data set C, and (d) data set D.
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We numerically integrated these equations using the
parameters o = 16, b = 4, and » = 45.92 as was done by
Abarbanel [1996] and a time step of Df = 0.01. The x
coordinate was recorded after every time step. A time serics
of the x coordinate, containing 10,000 points, is referred to
as data set A and 1s plotted in Figure la.
3.2. Shallow Water Model: Data Sets B and C

[15] In a study by Helfrich and Pratt [2003], flow in a
bounded basin that is drained through a strait is modeled
by the nondimensional, reduced gravity, shallow water
momentum

%+H-Vu+kx u=-Vh+h+D+M

and continuity

(4)
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10,000 data points. As r decreases, the time series changes
from nearly steady to periodic and then to aperiodic. For
sufficiently small r the time series appears irregular. In this
paper, we consider two data sets, one obtained for » = 0.003
(data set B, Figure 1b) and one for » = 0.001 (data set C,
Figure 1c). Although both time series are aperiodic, data
set C appears more irregular than data set B. In section 5.1
we will show that data set B corresponds to a low-
dimensional system, whereas data set C corresponds to a
high-dimensional system.

3.3. South Atlantic Bight Data (Data Set D)

[16] In an effort to gain experience in the application of
our methods to observational data, we chose to analyze a
record of near-bottom pressure from the continental shelf
off Georgia, collected as part of the South Atlantic Bight
Synoptic Offshore Observational Network (SABSOON)
[Seim, 2000]. We chose this time series for two main
reasons. First, we believed the dynamics of this region
would be less complicated than the dynamics associated
with the shelf break front in the Middle Atlantic Bight. We
anticipated that the dynamics of these shelf waters would be
tidally dominated and thus primarily linear. In this sense, the
South Atlantic Bight (SAB) time series was used as a
learning tool for the application of our methods to the shelf
break front. The second reason we chose this time series
was its record length and the anticipation of even longer
records as the SABSOON program continues its operations.
In our study we used a time series of near-bottom pressure
collected from May 2000 to October 2001. The raw data,
recorded in 6-min intervals, were hourly averaged to create
our data set D (Figure 1d). Since nonlinear models can be
constructed from consecutive data points only, gaps in the
training subseries were filled by using Fourier interpolation,
where the Fourier coefficients were estimated by least
squares fitting with a 2-day window leading each gap.

3.4. Middle Atlantic Bight Data (Data Set E)

[17] The main data set analyzed in this paper is a set of
hourly averaged, high-quality current and temperature
measurements collected during the Nantucket Shoals Flux
Experiment (NSFE) from March 1979 to April 1980
[Beardsley et al., 1985]. Six moorings were deployed across
the continental shelf and upper slope, south of Nantucket,
near 70°W. A schematic cross section of the array is shown
in Figure 2. A thorough description of the current and
temperature data, with a focus on the low-frequency vari-
ability, was given by Beardsley et al. [1985]. Briefly, they
found the mean current to be along-shelf toward the west,
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Figure 2. Schematic cross section of the NSFE79 moored

array. The locations of the moored instruments are marked
by open (short time series) or solid (long time series) circles.
The water depth (in meters) appears in parentheses next to
the mooring number for the long time series.

series is difficult because of the strong seasonality of the
temperature record and the short length of the record
relative to this dominant variability. Of the 18 velocity
records available, 8 cover a period of more than 1 year.
These eight relatively long records of both cross-shelf and
along-shelf velocity (marked with solid circles in Figure 2)
are investigated in this paper. The remaining records (at
most about half of a year long) are of inadequate length for
the application of our time series analysis. Four representa-
tive time series from the 16 selected for our study (eight
cross-shelf and eight along-shelf) are shown in Figure 3.
We should also note that two of the eight long records
contain gaps of approximately half a month. These gaps
were not filled because they are too wide. Special treatment
of these gaps will be discussed in section 5. Although there
are no other gaps in these selected MAB time series, we
note that these time series were prepared from raw data that
contained many short gaps [Beardsley et al., 1985].

4. Methods

[19] In this section we give an overview of the funda-
mentals of linear and nonlinear prediction methods and
comment on their utility and limitations. We also give an
overview of surrogate data testing and detail how we
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Figure 3. Representative MAB time series: (a) N2(32) along-shelf velocity, (b) N2(32) cross-shelf
velocity, (c) N5(28) along-shelf velocity, and (d) N5(28) cross-shelf velocity.

where a;, k=1, .. ., p are constant coefficients and {w,} is a
Gaussian white noise time series whose standard deviation
is 0. The noise term {w,} comes from random input from
the background. The parameters a; are chosen such that the
autocorrelation of the model matches with that for {x,}.
Such matching is assured by the solution of the associated
Yule-Walker equations [Brockwell and Davis, 1991].

[21] A time series satisfying equation (6) is a Gaussian
random process, and the parameters a; are uniquely deter-
mined by the autocorrelation function. Another view is that
these parameters are uniquely determined by the square of
the Fourier amplitudes (i.e., the power spectrum), which can
be converted from an autocorrelation by Fourier transform.
A consequence is that the Fourier phases can be regarded as
random. This important property is the basis for surrogate
data testing to be discussed in section 4.2.

[22] Linear methods are useful because they are very well
understood and are straightforward to implement. Addition-
ally, unlike the nonlinear methods to be discussed in
section 4.1, constructing linear models does not require
large amounts of data. However, when the underlying
dynamics are nonlinear, it is possible that the evolution of
the time series deviates significantly from that predicted by

space reconstruction. For example, a possible realization of
the ocean field can be considered as a state in phase space. If
the dynamics are deterministic, then all future phase states
are unambiguously determined by the present phase state.
Furthermore, if the present phase state can be determined
with small uncertainty, then at least for a short time the future
phase states can be determined quite accurately. If a time
series consists of only one variable {x,}, then the phase state
cannot be inversely determined. However, this task can be
achieved by constructing delay vectors X, = {x,, x, ., - -,
Xp—(d—1yr}» Which involve two parameters: the time lag T and
the embedding dimension d, provided d is sufficiently large,
a property ensured by the embedding theorem [Takens,
1981; Sauer et al., 1991]. To predict a future value of x,,,,,
given the present delay vector X,,, we search in the past
record for its nearest neighbor, say, X,,,. The value of x,,,, can
then be approximately predicted as x,,,,. Since observational
data are generally contaminated with noise, the determina-
tion of the present state also involves uncertainty. Taking
such uncertainty into account, prediction should be based
not just on a single neighbor but rather on the average of
an ensemble of close neighbors, each within a threshold
level of uncertainty, resulting in a locally constant model.
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involved in making such selections. If T is too small,
components in a delay vector are nearly identical, such that
adding new components does not provide new information.
On the other hand, if 7 is too large, successive components
are totally unrelated. Popular choices for T include the first
zero crossing of the autocorrelation function and the first
minimum of mutual information function [Fraser and
Swinney, 1986]. Typically, the effectiveness of a model is
not highly sensitive to the choice of T [Kantz and Schreiber,
1997].

[25] Delay vectors can be viewed as projections from the
full phase space of realizable states to a d-dimensional
space. The embedding dimension d reflects how many
degrees of freedom are being modeled. It should be chosen
sufficiently large so that different states are truly represented
by distinct delay vectors. The existence of ¢ can be proven
mathematically for purely deterministic systems of finite
degrees of freedom [Takens, 1981; Sauer et al., 1991]. A too
large choice of d, however, will introduce redundancy and
thus will degrade the performance of the model. An
appropriate choice of d can be identified by using the false
nearest neighbor (FNN) technique [Kennel et al., 1992]. To
choose d, one first assumes a provisional value for 4, then
locates the nearest neighbor of each delay vector using the
d-dimensional metric. Next, the same pairs of vectors are
both extended by adding one more delay coordinate and are
compared using the 4 + 1-dimensional metric. If they
become far apart, this “nearest neighbor™ is judged false.
The ratio (or percentage) of false nearest neighbors that is
computed (the FNN ratio) can be viewed as a measure of
determinism. By increasing d, the FNN ratio will decrease.
If a d can be found for which there are no more FNNSs, then
determinism is established. This d is used for constructing
delay embedding models. However, such a d may not
always exist in application. When the data are too short or
too noisy, estimates of the FNN ratio may contain signifi-
cant uncertainty. In fact, we will show that in some cases the
FNN ratio may appear to increase with d. As a result,
determinism may not be established. In such cases, we
choose d to be the dimension for which the FNN ratio either
appears to saturate or achieves a minimum.

[26] Nonlinear methods have a drawback when applied to
high-dimensional systems since the length of data required
for constructing nonlinear models increases rapidly with the
dimension of the underlying dynamics. This requirement can
be prohibitive for many observational time series, where data
sufficiency is usually an issue. Unfortunately, it is difficult to
determine how much data are needed for a given embedding
dimension without strong s.lmphtymg assumptlons le'ter-
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surrogate data test contains the following steps. First, a null
hypothesis (a potential explanation for the evolution of the
time series) is specified. Second, a number of random
realizations (called surrogate data) of the hypothesized
process are generated numerically. Third, we select a dis-
criminating statistic, denoted by 1, and compute its value for
the observed and surrogate time series. Finally, we determine
whether the value for the observed data, 1°, is significantly
different (in a statistical sense) from the surrogate data 17, i =
1, -+, m. Il it is, then the null hypothesis is rejected.

[28] The null hypothesis used in this paper is the follow-
ing: The observed time series may not have a Gaussian
distribution, but it can be derived from another time series
originating from a linear Gaussian stochastic process by a
nonlinear transform. The corresponding surrogate time
series are generated by an iterative Fourier transform
method [Hegger et al., 1999; Schreiber and Schmitz,
2000]. Notice that a Gaussian stochastic process is uniquely
determined by its Fourier amplitudes.

[29] After selecting 1 (discussed later in this section), we
can compare 1” and 1j;. If the difference is unlikely to be due
to chance only, then the null hypothesis is rejected. For
example, if 7 is the nonlinear prediction error and we want
to show that 7 is less than 7); at a significance level of o=
0.05, then at least m = 1/ce = 20 surrogate time series need to
be generated. If n? is less than v, forall i=1, - -, m, then
the null hypothesis is rejected because the probability that
such an event occurs by chance is less than 0.05.

[30] While the above analysis can distinguish between the
surrogate and observed time series, it does not provide
information about the magnitude of the discrepancy be-
tween 1” and ;. Such a quantification is necessary since the
selection of a complex rather than a simple model is not
worthwhile if the discrepancy is small. To quantify the
relative magnitude of discrepancy, we select the following

measure; _
Hn e H
g= i =%~ (7)
i=1 ﬂo

If g is much less than 1, the relative discrepancy can be
considered negligible.

[31] We now discuss our choice of discriminating statistic
7M. Since our aim is to test whether nonlinear models contain
extra predictable information compared with linear correla-
tion, the discriminating statistic should reflect predictability.
In particular, we consider the following two choices.
4.2.1. FNN Ratio (Hg)

[32] The FNN ratio discussed in section 4.1 reflects
Aeorece oF determiinitem and therefore corvee ae o onodd
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where &, is the predicted value for x,,. and &is the mean
of x, estimated by &= (3x,)/N. In equation (8) the RMS
magnitude of x, is used as a normalizing factor; thus 1z is a
dimensionless measure.

[34] Previous studies have shown that the statistic 1)p is a
powerful discriminating statistic for detecting nonlinearity
[Schreiber and Schmitz, 2000]. However, 1) is also useful
because it provides a guideline for the choice of the
embedding dimension, which is important for the success
of nonlinear prediction models.

[35] To avoid statistical bias, the delay embedding model
used for computing 7 or 1 should not be optimized for
the original data. Therefore a different choice of embedding
parameters could potentially improve predictions. In
section 4.3, when we discuss in detail how to quantify
predictability, we will search for an optimal model among a
number of candidates.

[36] What can we learn from a surrogate data test? We
learn whether a time series contains predictable structures
that cannot be modeled by linear methods, thereby gaining
information about the utility of nonlinear methods. How-
ever, it may not determine whether the underlying system is
nonlinear per se. In section 5 we present a time series that is
nonlinear deterministic but is nevertheless indistinguishable
from surrogate data. For this time series the use of nonlinear
methods does not improve prediction skill because the
available data are insufficient to uncover the deterministic
dynamics. In fact, the results presented in section 5 suggest
that surrogate data tests can detect low-dimensional non-
linear systems effectively, but not high-dimensional sys-
tems, unless, in theory, an extremely long time series is
available.

[37] Application of these methods to time series with
strong periodicity has drawbacks that have been previously
noted [Theiler et al., 1993]. In particular, positive surrogate
data tests may result, not from nonlinearity, but from error
induced by spectral estimation. In particular, this error may
occur if the length of an interval used for spectral estimation
is not a multiple of full cycles. In such a case, redundant
frequencies are induced in the estimated spectrum, and, as a
result, the surrogate time series appear noisier than the
original data, even for linear systems. Such issues cause
uncertainty for tests of the continental shelf data (data set D)
and the MAB data set. However, we believe that such
spectral errors compose only a small portion of prediction
errors and thus do not seriously affect our results.

4.3. Prediction Errors
[38] To test the accuracy of a prediction method, we
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various orders and nonlinear models with various embed-
ding parameters, as specified in section 5.

[39] As a final comment on our methods we note that we
have purposely chosen not to employ a more advanced
measure of predictability offered by dynamical systems
theory, that is, the Lyapunov exponent [see, e.g., Off,
1993], which measures the exponential growth rate of initial
errors. Theoretically, this measure has the advantage in that
it is a property of the underlying dynamical process.
However, estimating Lyapunov exponents on the basis of
time delay embedding is a very difficult task because of data
limitations. Studies have shown that estimates are likely to
be incorrect, even in relatively idealized situations [Ott et
al., 1994; Kantz and Schreiber, 1997].

5. Results

[40] In this section we apply surrogate data tests to data
sets A—E. Additionally, we compute prediction errors for
each of these data sets using linear and nonlinear methods,
as discussed in section 4,

5.1. Testing Nonlinearity Using Surrogate Data

[41] First, consider data sets A through C, all of which are
generated from nonlinear, deterministic systems. We test the
null hypothesis that the time series can be derived from a
linear Gaussian stochastic process via a possibly nonlinear
transform. In Figures 4a—4c - is plotted as a function of' d,
with T at a fixed value of 4. The original data are plotted
with the thick curve, while the distribution of the surrogate
data is shaded. For data sets A and B, 7. is initially large but
drops to near zero as d increases to 3 or larger, reflecting the
low dimensionality of data sets A and B. For the surrogates,
1y decreases also with increasing d, but the values are
substantially higher than the original time series. Clearly,
the null hypothesis can be rejected with a significance level
of 0.05 for both data sets A and B. For data set C, v
remains relatively high despite increasing d, suggesting that
the underlying dynamics are highly dimensional. Addition-
ally, ;- for the original data falls within the cloud of the
surrogate data sets; thus the null hypothesis cannot be
rejected for data set C. The increase in 1. past d = 4 for
data set C is an artifact caused by data insufficiency.

[42] The results of the surrogate data tests using mp as a
discriminating statistic are shown in Figures 4d—4f, where
np is computed by using a locally constant model. The
parameters ¢ and T were each fixed at 4. The averaged
prediction errors for data sets A, B, and C are plotted as a
function of prediction time s in Figures 4d, 4e, and 4f,
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Figure 4. Surrogate data tests for data sets A—C: (a—c) n,- and (d—f) . Values for the original data are
shown as the thick solid curves, while the shaded region indicates the range of values for the surrogate

data.

much less than 1, suggesting that the difference between the
original and the surrogates is not substantial. As with the
analysis of 1, and m;; these results suggest that surrogate
data tests can detect low-dimensional nonlinear systems
effectively but not high-dimensional systems.

[44] The results of the surrogate data tests for the SAB
shelf data are shown in Figure 5. The null hypothesis can be
rejected using 1)p as the discriminating statistic but not when
using m; However, the evaluation of gp (Table 1) shows
that the difference between the original data and the
surrogate data is quite small. Thus, though the cloud of
surrogates in Figure 5b is distinct from the original data, the
difference is small enough such that the use of a nonlinear
model would not be advisable.

[45] The above results for the SAB data set (D) could
suggest that the underlying dynamics are nonlinear and of
high dimensionality, similar to data set C. However, unlike
data set C, mp approaches zero when the embedding
dimension is 4 or 5 (Figure 5a), suggesting a system of
relatively low dimension. Additionally, the prediction errors
for data set D are quite small relative to data set C,

cases the original and surrogate data cannot be distinguished.
This assessment is confirmed by the small values for g and
gp (Table 1).

[47] As seen in Figures 6a and 6b, n is significantly
different from zero in all four cases, suggesting that the
embedding dimension is not sufficient to uncover any
determinism. Increasing the embedding dimension does
not reduce 1 significantly. In Figure 6b, np at d = 5 is
actually greater than at d = 4. As discussed in section 5.1,
this artifact is due to data insufficiency. When the prediction
errors for the surrogate time series saturate (Figures 6¢ and
6d), the prediction errors for the observed data are much
larger than those for data sets A and B, also an indication
that the system is not low dimensional. We add a cautionary
note here that these prediction errors calculated in this
section are not entirely indicative of the predictability of
the system for two reasons. First, these errors represent only
in sample errors, when out-of-sample errors should be used
to quantify predictability. Second, no effort has been made
to optimize the prediction models. With a different choice of
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Figure 5. Surrogate data tests for data set D: (a) 1,-and (b) ) Values for the original data are shown as

thick solid curves, while the shaded region indicates the range of the surrogate data.

embedding parameters, prediction errors are likely to be
reduced, as will be seen in section 5.2,

5.2. Predictability

[48] To quantify predictability, we divide a time series
into a training subseries and a testing subseries, as explained
in section 4.3. Linear and nonlinear models are constructed
from the training subseries and are applied to the testing
subseries. To test whether the prediction of nonlinear
systems can be improved by using nonlinear models, we
first consider data sets B and C. The order of AR models is
increased from 1 until a further increase does not signifi-
cantly improve prediction. This occurs when the order is
about 6 in both cases. The minimum prediction error
obtained from these 6 models is referred to as the linear
prediction error. We vary the embedding parameters to
optimize the nonlinear model. Qur earlier computation of
T (see Figure 4) suggests that the embedding dimension

0.4] e EEIN3 (32)
e[ IN5(28)

(a)

should not exceed 5. Therefore we apply locally linear
models using embedding dimensions from 3 up to 5, with
the time delay varying from 1 through 6, for a total of
18 models. The same set of embedding parameters was also
used to construct locally constant models, but we find that
locally linear models are more accurate than locally constant
models. The minimum prediction error obtained from these
models is referred to as the nonlinear prediction error.

[49] Linear and nonlinear prediction errors as a function
of time for data sets B and C are shown in Figure 7.
Nonlinear prediction errors are much smaller than linear
prediction errors for data set B, suggesting that nonlinear
prediction models are superior. On the other hand, non-
linear prediction errors are actually larger than linear
prediction errors for data set C. Since an AR model can
be viewed as a special case of locally linear models, the
better performance of linear prediction errors for data set C
indicates that none of the selected nonlinear models is

alongshelf
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=
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Figure 7. Relative prediction errors as a function of time for (a) data set B and (b) data set C. Linear
errors are shown by the thin curves, and nonlinear errors arc shown by the thick curves.

optimal. We note that the flexibility of nonlinear models
makes it difficult to find the optimal one. Comparison of
the two cases suggests that nonlinear models can improve
prediction significantly if the system is low dimensional
but not if the system is high dimensional. We believe this
difference arises because the data are not sufficient for
constructing high-dimensional models.

[s0] How much data are needed for nonlinear methods
to be effective? Although in principle, data set C can
be extended indefinitely, computational resources limited
the regeneration of data set C to a tenfold increase, or
100,000 data points. For this longer time series the FNN
ratio ceases to decay at around dimension 7. (As discussed
in section 5.1, it is an artifact that the FNN ratio does not
drop further for higher embedding dimension.) Thus we use
embedding dimension from 3 up to 7. The testing subseries
is chosen to be the same as for the shorter time series.
Compared with the shorter time series, the magnitude of
nonlinear prediction errors is smaller (see Figure 8), while
linear prediction errors maintain the same magnitude.
Nonetheless, nonlinear predictions are still no more
effective than linear predictions. Furthermore, we find that
the longer time series is also indistinguishable from the
surrogate data. These results further suggest that high-

Dataset C

linear r

-

—  NoONlinear

fiction Error

dimensional systems require very long duration data for
the effectiveness of nonlinear methods.

[51] For data sets D (the SAB data) and E (the MAB data)
we use the same method to select the maximum order of AR
models, which turns out to be about 12. Thus in total we
consider 12 different models. As before, our nonlinear
model is a locally linear model using embedding dimen-
sions from 3 up to 5 and time delays from 1 hour up to
12 hours, for a total of 36 models. For the predictability of
data set D, a year-long training subseries is used, and the
length of the test subseries is chosen to be 1 month. The
resulting prediction errors are plotted against prediction
time in Figure 9. Both the nonlinear and the linear errors
are quite small; however, linear models seem to outperform
nonlinear models, which, as discussed earlier, is due to the
suboptimal behavior of the selected nonlinear models. The
fact that nonlinear models fail to outperform linear models
could be due to the high dimensionality of the SAB data set,
as suggested for data set C. However, for data set C both
linear and nonlinear prediction errors are quite large, while
for data set D they are both small. Therefore a more feasible
explanation for why nonlinear models do not outperform
linear models for data set D (the SAB data) may be that the
underlying dynamics are close to linear, as postulated in

Dataset D

linear
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Figure 10. Relative prediction errors as a function of time for the N2(32) (solid curves) and N5(28)

(dashed curves) time series: (a) along-shelf velocity and (b) cross-shelf velocity. Linear errors are shown
by the thin curves, and nonlinear errors are shown by the thick curves.

section 5.1. We note here that our results show that the
pressure field in this region of the SAB is remarkably
predictable out to 12 hours, with errors on the order of 10%
of the RMS, a result consistent with our expectation of a
tidally dominated regime. Data set E (the MAB data) is
shorter than data set D, so a shorter training subseries is
used. We use an ll-month training subseries for the six
time series containing year-long consecutive records. For
the two time series with wide gaps (at N2) we use the
uninterrupted segments before the gaps as the training
subseries. The length of the test subseries is again chosen
to be 1 month.

[52] Again, we use N2(32) and N5(28) to illustrate the
typical time dependence of prediction errors for data set E
(Figure 10). In all cases, prediction errors saturate at about
5 hours. Predictions are moderately good for N2(32) but
rather poor after 5 hours for N5(28). Interestingly, cross-
shelf velocity is more predictable than along-shelf velocity
at N2(32), but the opposite is found at N5(28). This
difference might be due to the presence of the strong
along-slope frontal current at N5(28), which would facilitate
along-slope predictions. In general, this analysis shows that
nonlinear predictions fail to outperform linear predictions,
rendering their use unnecessary for this data, as suggested in
section 5.1 by the surrogate data tests.

[53] To examine the spatial structure of predictability, we
show prediction errors at 1 hour, 3 hours, and 12 hours for
all eight time series in Figure 11. In all cases, linear and
nonlinear prediction errors have approximately the same
magnitudes, again suggesting that there is no advantage in
using nonlinear prediction models. Figures 11a and 11b

where the dynamics are dominated by a highly variable and
unstable frontal current; therefore it is not surprising that
prediction degenerates quickly for these time series. On the
shelf the relative prediction errors are at most (.5, suggest-
ing there is significant predictability during this period,
doubtless due to the dominance of the tides on the shelf,
as was also noted for the SAB data set. On the other hand,
on the slope the 12-hour prediction errors can be as large as
the RMS magnitude of the velocity itself, which is no better
than simply predicting the statistical mean. Hence predict-
ability is lost almost completely. Prediction errors for cross-
shelf and along-shelf components are roughly the same
order of magnitude, yet the difference between the two
has significant spatial structures. In particular, the cross-
shelf velocity seems to be more predictable than the along-
shelf components on the shelf, but the opposite is true on
the slope. The greater predictability of the along-shelf
component over the slope may be due to the downstream
advective influence provided by the shelf break frontal
current.

6. Summary

[s4] This analysis was designed with a twofold purpose:
first, to establish procedures that would evaluate the effec-
tiveness of nonlinear methods in the analysis of oceanic
time series and second, to determine the predictability of the
flow field in the shelf break region of the Middle Atlantic
Bight. Subsumed by the first and second goals was another,
namely, to determine whether nonlinear methods could
improve on prediction estimates for the shelf break velocity
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predictability generally decreasing from the shelf to the
slope waters. This decrease is attributed to the presence of
a highly variable frontal current that is generally situated at
the shelf break. For the shelf waters the predictability of the
velocity field is reasonably good. Prediction errors after
12 hours are generally no larger than one half of the standard
deviation of the observed velocity field. Prediction errors at
the slope, however, are significantly larger. After 12 hours
these errors approach the magnitude of the standard devia-
tion of the observed field, calling into question the utility of

low dimension characterizes the system. However, for high-
dimensional systems the utility of nonlinear models is
severely limited by the sufficiency and quality of data.

[57] This was demonstrated by our use of data set C,
again generated from a nonlinear shallow water model but
with parameters that yielded a more aperiodic, irregular time
series. In fact, increasing the data length tenfold is still not
enough for the nonlinear methods to be more effective. Our
judgment as to whether nonlinear methods were useful for
the analysis of these data sets was based on surrogate data
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dynamics. This distinction between the data sets is primarily
based on the analysis of the false nearest neighbors, which
showed that the SABSOON data had a relatively low
dimension, in contrast to the NSFE data for which a clear
embedding dimension could not be established. Thus, while
we believe the NSFE data is inherently nonlinear, the
available data set was not sufficient for constructing the
necessary high-dimensional model that could, possibly,
have outperformed a linear model. To counter the difficul-
ties imposed by data limitations, efforts to assess the
underlying dynamics in this region should be encouraged.
The application of model dynamics could place important
constraints on the predicted fields.

[s9] Finally, in order to pursue the question as to whether
nonlinear methods can be useful in the analysis of ocean
time series, future work could establish whether, indeed, the
methods are limited by quality (i.e., noise) and record
length. Given the obvious limits of observed time series,
such work would more than likely need to focus on model-
generated data. Additionally, to improve the predictability
of the dynamics in the shelf break frontal region, future
work could incorporate spatial information in the time series
analysis. We note also that for the prediction of a shelf break
front, marked by sharp thermal and haline contrasts, tem-
perature and salinity fields may be more informative than
velocity fields.

[60] Acknowledgments. We thank Harvey Seim for providing the
shelf data (data set D) from the South Atlantic Bight and Kipp Shearman,
Glen Gawarkiewicz, Lenny Smith, Steve Lentz, and Cecile Penland for
helpful discussions. We are also grateful to the two anonymous referees
whose comments improved the paper. This research was supported by
Office of Naval Research grants N00014-01-1-0260, N00014-92-]-1481,
and N10014-99-1-0258.

References

Abarbancl, H. D. 1. (1996), Analysis of Observed Chaotic Data, 272 pp.,
Springer-Verlag, New York.

Beardsley, R. C., D. C. Chapman, K. H. Brink, S. R. Ramp, and R. Schlitz
(1985), The Nantucket Shoals Flux Experiments (NSFE79). Part I: A
basic description of the current and temperature variability, J. Phys.
Oceanogr., 15, T13—748.

Brockwell, P. J., and R. A. Davis (1991), Time Series: Theory and Methods,
2nd ed., 577 pp., Springer-Verlag, New York.

Casdagli, M., S. Eubank, J. D. Farmer, and J. Gibson (1991), State space
reconstruction in the presence of noise, Physica D, 51, 52—-98.

Eckmann, J.-P., and D. Ruelle (1992), Fundamental limitations for estimat-
ing dimensions and Lyapunov exponents in dynamical systems, Physica
D, 56, 185 187.

Emery, W. 1., and R. E. Thomson (1998), Data analysis methods in physical
oceanography, 634 pp., Pergamon, New York.

Farmer, J. D., and J. J. Sidorowich (1987), Predicting chaotic time series,
Phys. Rev. Lett., 59, 845 - 848.

Flagg, C. N., and R. C. Beardsley (1978), On the stability of the shelf water/
slope water front south of New England, J. Geophys. Res., 83, 4623

YUAN ET AL.: PREDICTABILITY OF AN OCEANIC TIME SERIES

C08002

Frison, T. W,, H. D. 1. Abarbanel, M. D. Earle, J. R. Schultz, and W. D.
Scherer (1999), Chaos and predictability in occan water levels, J. Geo-
phys. Res., 104, 79357951,

Gawarkicwicz, G. (1991), Lincar stability modcls of sheltbreak fronts,
J. Phys. Oceanogr., 21, 471 —488.

Grassherger, P, R. Hegger, H. Kantz, C. Schaffrath, and 1. Schreiber (1993),
On noise reduction methods for chaotic data, Chaos, 3, 127141,

Hegger, R., H. Kantz, and T. Schreiber (1999), Practical implementation of
nonlinear time series methods: The TISEAN package, Chaos, 9, 413—
435.

Helfrich, K. R., and L. J. Pratt (2003), Rotating hydraulics and upstream
basin circulation, J. Phys. Oceanogr:, 33, 1651 -1663.

Kantz, H., and T. Schreiber (1997), Nonlinear Time Series Analysis,
304 pp., Cambridge Univ. Press, New York.

Kennel, M. B., R. Brown, and H. D 1. Abarbanel (1992), Determining
embedding dimension for phase-space reconstruction using a geometrical
construction, Phys. Rev. A, 45, 3403-3411.

Lozier, M. S., and G. Gawarkicwicz (2001), Cross-frontal cxchange in
the Middle Atlantic Bight as cvidenced by surface drifiers, J. Phys.
Oceanogr., 31, 2498 -2510.

Lozier, M. 5., M. S. C. Reed, and G. G. Gawarkiewicz (2002), Instability of
a shelfbreak front, J. Phys. Oceanogr., 32, 924944,

Ott, E. (1993), Chaos in Dynamical Systems, 385 pp., Cambridge Univ.
Press, New York.

Ott, E., T. Sauer, and J. A. Yorke (Eds.) (1994), Coping With Chaos:
Analysis of Chaotic Data and the Exploitation of Chaotic Systems,
418 pp., John Wiley, Hoboken, N. J.

Penland, C., and P. D. Sardeshmukh (1995), The optimal growth of tropical
sea surface temperature anomalies, .J Clim., 8, 19992024,

Procaccia, 1. (1988), Weather systems: Complex or just complicated?,
Nature, 333, 498 499.

Sauer, T. (1993), Time series prediction using delay coordinate embedding,
in Time Series Prediction: Forecasting the Future and Understanding the
Past, cdited by A. S. Weigend and N. A. Gershenfeld, 643 pp., Addison-
Wesley-Longman, Reading, Mass.

Sauer, T., J. A. Yorke, and M. Casdagli (1991), Embedology, J. Stat. Phys.,
65, 579-616.

Schreiber, T., and A. Schmitz (2000), Surrogate time series, Physica D, 142,
346-382.

Seim, H. E. (2000), Implementation of the South Atlantic Bight Offshore
Observational Network, Oceanography, 13(2), 18—23.

Smith, L. A. (1988), Intrinsic limits on dimension calculations, Phys. Rev.
A, 133, 283 -288.

Smith, L. A. (1992), Identification and prediction of low dimensional
dynamics, Physica D, 58, 50-76.

Sugihara, G., and R. M. May (1990), Nonlinear forecasting as a way of
distinguishing chaos from measurement error in time series, Nature, 344,
734 740.

Takens, F. (1981), Detecting Strange Attractors in Turbulence, Lect. Notes
Math., vol. 898, Springer-Verlag, New York.

Theiler, I., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer (1992),
Testing for nonlinearity in time series: The method of surrogate data,
Physica D, 58, TT-94,

Theiler, J., P. S. Linsay, and D. M. Rubin (1993), Detecting nonlinearity in
data with long coherence times, in Time Series Prediction: Forecasting
the Future and Understanding the Past, edited by A. S. Weigend and
N. A. Gershenfeld, 643 pp., Addison-Wesley-Longman, Reading, Mass.



