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transcriptional factors’ activation in triple-negative breast 
cancer

Li Min1,2,3,*, Cheng Zhang1,*, Like Qu1, Jialiang Huang2,3, Lan Jiang2,3, Jiafei Liu1, 
Luca Pinello2,3, Guo-Cheng Yuan2,3, Chengchao Shou1

1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Departments of Biochemistry and 
Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100036, P. R. China

2Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
3Harvard T. H. Chan School of Public Heath, Boston, MA 02115, USA
*These authors have contributed equally to this work

Correspondence to: Chengchao Shou, email: scc@bjcancer.org
Guo-Cheng Yuan, email: gcyuan@jimmy.harvard.edu

Keywords: gene regulatory pattern, network analysis, transcriptional factors, TNBC
Received: October 27, 2016     Accepted: January 10, 2017     Published: February 27, 2017

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer 
subtype. Genome-scale molecular characteristics and regulatory mechanisms that 
distinguish TNBC from other subtypes remain incompletely characterized.

Results: By combining gene expression analysis and PANDA network, we defined 
three different TF regulatory patterns. A core TNBC-Specific TF Activation Driven 
Pattern (TNBCac) was specifically identified in TNBC by computational analysis. The 
essentialness of core TFs (ZEB1, MZF1, SOX10) in TNBC was highlighted and validated 
by cell proliferation analysis. Furthermore, 13 out of 35 co-targeted genes were also 
validated to be targeted by ZEB1, MZF1 and SOX10 in TNBC cell lines by real-time 
quantitative PCR. In three breast cancer cohorts, non-TNBC patients could be stratified 
into two subgroups by the 35 co-targeted genes along with 5 TFs, and the subgroup 
that more resembled TNBC had a worse prognosis.

Methods: We constructed gene regulatory networks in breast cancer by Passing 
Attributes between Networks for Data Assimilation (PANDA). Co-regulatory modules 
were specifically identified in TNBC by computational analysis, while the essentialness 
of core translational factors (TF) in TNBC was highlighted and validated by in vitro 
experiments. Prognostic effects of different factors were measured by Log-rank test 
and displayed by Kaplan-Meier plots.

Conclusions: We identified a core co-regulatory module specifically existing in 
TNBC, which enabled subtype re-classification and provided a biologically feasible 
view of breast cancer.

INTRODUCTION

Breast cancer subtyping was widely used in clinical 
decisions, such as relapse risk evaluation and treatment 
selection [1, 2]. According to the evaluation of estrogen 
receptor (ER), progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER-2/ERBB2/
Neu), breast cancers are routinely divided into hormone 
receptor positive, HER-2/Neu amplified, and triple-

negative breast cancer (TNBC) subtypes [2–4]. TNBC is 
particularly aggressive, thus often associated with relapse 
and the worst prognosis [3]. Due to a lack of appropriate 
molecular targets, TNBC patients could not benefit from 
endocrine or HER2-targeted therapy [5–7].

Multiple molecular characteristics of TNBC have 
been well identified [8–12], however, most studies were 
conducted from the perspective of gene expression, which 
cannot reflect the whole scope of pathologic mechanisms 
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on gene regulation level, consequently, many questions 
of TNBC remain unanswered [13]. Recent systemic-level 
network analyses have been applied for diseases study 
and provide significant insights [14–16]. By incorporating 
multiple sources of data to model biological processes, 
especially transcriptional factor (TF) -gene regulatory 
networks, integrative analyses show promising perspective 
in comprehending of pathophysiologic mechanisms and 
developing novel and precise therapies [16, 17]. Among 
the multiple integration tools, Passing Attributes between 
Networks for Data Assimilation (PANDA) has better 
performance and higher accuracy [18–22]. PANDA 
predicts TF-gene regulatory relationships by integrating 
information from protein-protein interaction (PPI), gene 
expression, and TF-sequence-motif data using a message-
passing approach, and it has been successfully used to 
study several diseases including Chronic Obstructive 
Pulmonary Disease (COPD) [23] and ovarian cancer [24].

In this study, we applied PANDA to characterize the 
gene regulatory network underlying TNBC, integrating 
datasets from The Cancer Genome Atlas (TCGA) database 
[25, 26]. In addition, we validated our predictions by using 
independent datasets obtained from Cancer Cell Line 
Encyclopedia (CCLE) [27, 28], Achilles [29, 30], Gene 
Expression Omnibus (GEO) [31] and Netherlands Cancer 
Institute (NKI) [32]. Our network approach identified a 
previously unrecognized core module containing 5 TFs 
and 35 target genes, thereby providing new mechanistic 
insights into TNBC. These insights are useful for 
prognosis as well as development of new therapeutic 
methods.

RESULTS

Building TF-target regulatory networks of 
NORM, nTNBC and TNBC

Expression data for 63 NORM, 445 nTNBC and 
89 TNBC tissue samples were extracted from TCGA. 
Robust multichip average (RMA) method [12, 33] was 
used for normalization and all probes were mapped to 
Ensembl Gene Symbols by R package mygene. Separate 
TF-target regulatory networks for the three tissue types 
were constructed by PANDA. An overview of the analysis 
pipeline is shown in Figure 1.

For each TF-target edge, a Z-score was given to 
reflect the confidence level of the potential regulatory 
relationship. Distribution of Z-scores in different groups 
was shown in Figure 2A. All edges with an FDR-adjusted 
p<0.05 were considered significant and used for the 
subsequent analysis. The overlap of significant edges 
between the tissue-specific networks was displayed as a 
Venn diagram (Figure 2B). More than 80% of TF-target 
edges were commonly shared among all three networks, 
indicating strong conservation, much higher compared to 
the overlap of differently expressed genes (Figure 2C).

Furthermore, ENCODE data were downloaded 
to validate the TF-target edges identified from our 
computational analysis. Since only two breast cancer cell 
lines were available in the ChIP-seq database, we chose 
to verify common edges in all cancer cells rather than in 
breast cancer cells only. For each TF, its target genes in 
each cell line were determined as those containing at least 
one peak in its promoter region (defined as [−750,+250] 
base-pairs around the transcription start site of an Ensembl 
Gene). Genes targeted in more than five cell lines were 
considered as common targets. We then compared the 
overlap between the ChIPseq-defined target genes and 
those predicted by PANDA. Take JUN, an evolutionarily 
conservative TF as an example, most of its common 
targets were ranked among the top 20% in our PANDA 
predicted networks (Figure 2D–2L, AUC>0.6), indicating 
our predictions were reasonable although not completely 
accurate. The complete results for validation were shown 
in Supplementary Figure 1.

Identification and TFs co-regulation analysis of 
three distinct patterns

All genes’ expression profiles were pairwisely 
compared among NORM, nTNBC and TNBC by t-test, 
while genes with FDR<0.1 were considered differentially 
expressed. By combining the differential expression data 
and three networks together, three regulatory patterns were 
identified (Figure 1B): First, the Universal Malignancy 
Progression Pattern (UM) was defined as general 
biological processes during tumor progression, for which 
both TF and its targets were stepwise up/down-regulated 
from NORM to nTNBC to TNBC, in accordance with 
tissue malignancy change. These links are shared in all 
three tissue types (Figure 1B, first line). Second, the TF 
Overexpression Driven TNBC-Specific Pattern (TNBCov) 
was defined as those edges for which both the TF and its 
targets were up/down-regulated only in TNBC tissues 
(Figure 1B, second line). This pattern is associated with 
the effect of TF over-expression. Third, the TF Activation 
Driven TNBC-Specific Pattern (TNBCac) was defined as 
those edges for which the TF-target links were present 
only in the TNBC networks and the target genes were 
differentially expressed only in TNBC tissues (Figure 1B, 
third line). This pattern mimics a driving process in TNBC 
caused by TNBC specific TF activation or other functional 
changes.

Co-regulation of all three patterns was shown in 
a CIRCOS-like plot (Figure 3A). Venn diagrams show 
overlaps of TFs and target genes in these three patterns 
(Figure 3B and 3C). Neither the TFs nor the target genes 
in TNBCov pattern had any overlap with the UM pattern, 
which is in accordance with their definitions. TFs in all 
three patterns were mostly unique, indicating that the 
patterns were tissue specific.
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Figure 1: Outline of pattern finding approach. A. Conceptual illustration summary of network construction and data processing; 
B. Cartoon chart to exhibit different regulation pattern we defined.
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TF target profile similarity analysis was performed 
to identify TFs co-regulation modules. Target profile 
similarity between TFs in the UM, TNBCov, and 
TNBCac pattern and all the three together was shown 
by consistency heatmap (Figure 4A–4D). TF co-
regulation modules in different patterns were identified 
and summarized in Table 1. Representative two-TF co-
regulation, three-TF co-regulation, and largest TFs co-
regulation in different patterns were shown by a Venn 
diagram (Figure 4E).

Of note, three patterns identified from our network 
analysis had very different topological differences. For the 

UM pattern, a gene was typically regulated by few TFs, 
but many TFs tend to share a common set of target genes 
for the TNBCac pattern.

Functional analysis of TNBCac core genes and 
target genes in all three patterns

In the co-regulation analysis, we noticed that five 
TFs (SOX10, M2F1, ZEB1, ETS1, GATA2) shared 
most of their target genes together (35 target genes were 
identified to be regulated by all these five TFs in this 
pattern, Figure 4E, right down panel). Since the shared 

Figure 2: Gene regulatory network construction and validation. A. Edge Z score distribution of different group; B. The overlap 
of edges between different groups; C. The overlap of differential expressed genes between different comparison; D.E.F. Density distribution 
of edges aligning by Z score rank, grouped by ENCODE ChIP-seq data (normal, nTNBC, TNBC); G.H.I. Histogram of ENCODE edges 
aligning by Z score rank of PANDA network (normal, nTNBC, TNBC); J.K.L. ROC curve of ENCODE edges aligning by Z score rank of 
PANDA network (normal, nTNBC, TNBC).
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Figure 3: Pattern finding and sub-network construction. A. TF co-regulation network in different regulation pattern (Solid circles 
distributed along inner ring stand for TFs, edges link the circles and outer ring stand for target genes of TFs, different color of circles and 
edges stand for different expression pattern of TFs and their targets); B. The overlap of TFs in different regulation pattern; C. The overlap 
of target genes in different regulation pattern.
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Figure 4: TF target profile similarity analysis and module finding. A.B.C.D. Target profile similarity between the TFs in (UM 
pattern, TNBCov pattern, TNBCac pattern, All the above); E. Co-regulation modules found in UM pattern, TNBCov pattern, TNBCac 
pattern.
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35 genes (details listed in Supplementary Table 1) were 
insufficient to perform GO enrichment analysis, we 
explored the TF-target regulation network in TNBC, 
including genes that were not directly targeted but 
only a few steps away (described in Methods section). 
Finally 1,590 genes (including the initial 35 genes) were 

recruited for GO analysis. GO terms in three categories 
(response to stimulus, immune response and signal 
transduction) were found most significantly enriched in 
these 1,590 genes (Table 2). Stem cell related GO terms 
and epithelial-mesenchymal transition (EMT) related GO 
terms were also found significant (p<0.05) in our analysis, 

Table 1: Co-Regulation TF modules in all three patterns

Co-Regulation in Different Pattern Co-Regulation TF Groups

UM TFs Co-Regulation 1. FOXD1, SPI1, NR4A2
2. ELK1, ELK4, SPI1
3. TCF3, STAT1, STAT3, SPI1
4. TLX1, KLF4, MYCN, SPI1

TNBCov TFs Co-Regulation 1. FEV, SPIB, ETS1, ZEB1
2. ETS1, ZEB1, (RXRA, NFYA, PAX2, POU5F1)
3. POU5F1, FOXA2
4. RUNX1, NFE2L2, (NFYA, FEV)
5. EN1, PAXB, MAX

TNBCac TFs Co-Regulation 1. SOX10, M2F1, ZEB1, ETS1, GATA2
2. NFIC, SOX10, M2F1, ZEB1, ETS1, GATA2, (YY1, SPI1)
3. NFE2L1, MAFG, (GATA3, SPIB, FEV)

Table 2: GO enrichment analysis of the sub-network extended by 35 core genes (1590 genes included)

GOBPID P-value Count Term

GO:0002376 7.34E-35 364 immune system process

GO:0001775 4.90E-31 184 cell activation

GO:0048518 5.98E-31 562 positive regulation of biological process

GO:0048584 1.62E-26 254 positive regulation of response to stimulus

GO:0048583 1.82E-26 429 regulation of response to stimulus

GO:0006955 4.21E-26 236 immune response

GO:0050896 4.29E-25 860 response to stimulus

GO:0045321 5.43E-25 140 leukocyte activation

GO:0002682 1.38E-24 206 regulation of immune system process

GO:0048522 2.95E-23 489 positive regulation of cellular process

GO:0007165 7.83E-22 621 signal transduction

GO:0023052 9.51E-22 669 signaling

GO:0044700 9.51E-22 669 single organism signaling

GO:0007154 3.19E-21 674 cell communication

GO:0046649 3.88E-21 119 lymphocyte activation

GO:0051716 4.09E-21 714 cellular response to stimulus

GO:0051239 4.66E-21 309 regulation of multicellular organismal process

GO:0006950 5.36E-21 437 response to stress

GO:0042110 1.12E-20 96 T cell activation
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validating the previous findings that TNBC was associated 
with cancer stem cell (CSC) and EMT process [34, 35] 
(Supplementary Figure 2).

TNBCac cores TFs are functionally 
essential in cancer cells

To test whether the predicted core genes were 
essential, we further conducted an integrated analysis 
combining CCLE expression data and Achilles shRNA 
screening data. Among the 5 core TFs identified in the 
largest TNBCac co-regulation module, ETS1 and GATA2 
seemed to be not generally crucial in survival and growth 
of cancer cells (Supplementary Figure 3A), which may be 
due to nonlinear dose-dependence or insufficient shRNA 
interference efficiency. All MZF1 shRNAs, 4 out of 5 
SOX10 shRNAs, and 2 of 3 ZEB1 shRNAs exhibited a 
strong effect on nearly all 212 cell lines (Supplementary 
Figure 3B), suggesting that these 3 TFs could be 
functionally essential in cancer cells.

Furthermore, clustering 13 breast cancer cell lines 
with shRNA scores of MZF1, SOX10 and ZEB1, could 
roughly distinguish TNBC cell lines from nTNBC cell 
lines (Figure 5A). Of note, only two nTNBC cell lines 
BT474 and EFM19 were clustered together with TNBC 
cell lines, whereas all TNBC cell lines were clustered in 
the same group. In contrast, analysis of the expression 
data of these TFs only was unable to reproduce the 
clusters (Figure 5B), indicating that our network analysis 
provides significant new biological insights of these TFs. 
Representative shRNA score distributions of MZF1, 
SOX10 and ZEB1 were displayed in HCC1187 (Figure 
5C) and ZR7530 (Figure 5D).

The 35 core target genes were also investigated. 
Generally, these genes are functionally essential in cancer 
cells (Supplementary Figure 3C), and their shRNA 
scores could precisely distinguish TNBC cell lines from 
nTNBC cell lines without any mismatch (Figure 5E). The 
expression data of these genes had a moderate accuracy 
in discriminating TNBC from nTNBC cells (Figure 5F), 
suggesting that the difference of these target genes in 
TNBC and nTNBC was mainly at expression level.

In vitro validation of the core TFs' essentialness 
and regulatory role in TNBC

To validate the essentialness of the core TFs (MZF1, 
SOX10 and ZEB1) in different breast cancer cell lines, 
four TNBC and four nTNBC cell lines were used for 
CCK8 cell proliferation analysis. Two different siRNAs 
of each core TFs were transfected in all eight cell lines 
(Figure 6A&6D, Supplementary Figure 4A), and the ones 
with better interfering efficiency were used for subsequent 
CCK8 and RT-qPCR analysis. After silencing of each core 
TFs, TNBC but not nTNBC cell proliferation rate changed 
significantly (Figure 6B and 6C, Supplementary Figure 

4B, the only exception was siMZF1 in MCF7 cells). Thus 
our results, both in silico and in vitro, indicated that these 
3 TFs were functionally essential for TNBC but not for 
nTNBC cell proliferation.

To validate the TF-target correlation of core TFs 
in breast cancer cell lines, 13 of the 35 core target genes 
were assessed by RT-qPCR after silencing of each core 
TFs in two nTNBC cells (MCF-7/ZR75) and TNBC cells 
(HS578T/MB231). The expression fold change of the 
target genes after MZF1 silencing in nTNBC cells was 
not significantly correlated with predicted nTNBC MZF1-
target edge Z-scores (MCF-7, R=0.299, p=0.320; ZR75, 
R=0.041, p=0.895, Figure 6E and 6F). However, fold 
change in TNBC cells was significantly correlated with 
predicted TNBC MZF1-target edge Z-scores (HS578T, 
R=0.612, p=0.026; MB231, R=0.564, p=0.044). Silencing 
of SOX10 and ZEB1 also achieved similar results 
(Supplementary Figure 5), suggesting that regulatory 
relationships between these 3 TFs and the core target 
genes were TNBC specific as predicted.

TNBCac pattern recapitulates TNBC status and 
is associated with survival

The 35 core genes and their co-regulators (not only 
TFs in TNBCac patterns) were collected as a novel gene 
signature, and clinical application of this gene signature 
was explored in several datasets.

Clustering result of TCGA breast cancer patients 
by these genes had high accordance with the NORM-
nTNBC-TNBC classification (Figure 7A). Nearly all 
TNBC were classified into the same subgroup (Cluster 3) 
which has the worst prognosis, and the only two TNBC 
patients classified to the other subgroup (Cluster 1) were 
still alive till last follow-up (Figure 7B), suggesting the 
tumor in these patients was less aggressive.

We further stratified nTNBC patients into two 
subgroups according to similarity with the TNBCac 
pattern. Strikingly, the subgroup that more resembles 
TNBC turned out to have a worse prognosis than the 
other subgroup (Figure 7C), suggesting that the TNBCac 
signature can also be used as a guide to identify more 
aggressive nTNBC tumors. To test if this prediction is 
robust, we applied the same analysis to two independent 
breast cancer datasets (NKI and GSE3494), and achieved 
similar results (Figure 7D–7G).

DISCUSSION

Although the molecular traits of breast cancer have 
been discussed in previous reports, studies addressing the 
regulatory spectrums of breast cancer subtypes were rare 
[10–12]. Using network topologies and gene expression 
differences among NORM, nTNBC and TNBC tissues, we 
distinguished three different TF-gene regulatory patterns, 
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Figure 5: Essentialness evaluation of core TFs and their co-targeted genes in TNBCac pattern in breast cancer. 
A. Heatmap and hierarchical clustering result of 13 Achilles breast cancer cell lines by siRNA scores of 3 Core TFs; B. Heatmap and 
hierarchical clustering result of 13 Achilles breast cancer cell lines by mRNA expression level of 3 Core TFs; C. Rank and siRNA scores of 
3 Core TFs in HCC1187 cell line; D. Rank siRNA scores of 3 Core TFs in ZR7530 cell line; E. Heatmap and hierarchical clustering result 
of 13 Achilles breast cancer cell lines by siRNA scores of 35 Core co-targeted genes; F. Heatmap and hierarchical clustering result of 13 
Achilles breast cancer cell lines by mRNA expression level of 35 Core co-targeted genes.
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which reflected three different biological regulatory 
modes. The TNBCac pattern exhibited a highly significant 
TF-TF co-regulatory mode. On the contrary, the TFs 
involved in UM pattern showed a very weak relationship 
with each other. Thus TNBC may directly originate from 
NORM instead of nTNBC. This hypothesis is consistent 

with the fact that transition from nTNBC to TNBC was 
barely observed in clinical patients [3]. Considering 
that TF-TF co-regulation was much more significant in 
TNBCac than in TNBCov, the process of initiating TNBC 
would more possibly be TF activation driven than TF 
overexpression driven.

Figure 6: Essentialness validation of core TFs in breast cancer cell lines. A. Silencing of ZEB1, MZF1, SOX10 by two siRNAs 
in nTNBC cells (MCF-7 and ZR75); B. Cell proliferation cure after silencing of ZEB1, MZF1, SOX10 in nTNBC cells; C. Correlation 
between predicted TF-target Z-score and target gene expression fold change after silencing of MZF1 in nTNBC cells; D. Silencing of 
ZEB1, MZF1, SOX10 by two siRNAs in TNBC cells (HS578T and MB231); E. Cell proliferation cure after silencing of ZEB1, MZF1, 
SOX10 in TNBC cells; F. Correlation between predicted TF-target Z-score and target gene expression fold change after silencing ofMZF1 
in TNBC cells.
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Figure 7: Clustering breast cancer patients by 35 core genes and their regulators, and survival analysis. A. Heatmap and 
hierarchical clustering result of TCGA breast cancer patients by 35 core genes and their regulators, 3 subgroups were isolated according to 
the hierarchical tree; B. Kaplan-Meier curve of DMFS in TCGA breast cancer patients, grouped by clustering result; C. Kaplan-Meier curve 
of DMFS in TCGA breast cancer patients, all patients were grouped to TNBC, nTNBC with same core expression profile with TNBC, and 
other nTNBC; D. Heatmap and k-means clustering result of validating DATASET1 by 35 core genes and their regulators; E. Kaplan-Meier 
curve of DMFS in validating DATASET1, all patients were grouped to TNBC, nTNBC with same core expression profile with TNBC, and 
other nTNBC; F. Heatmap and k-means clustering result of validating DATASET2 by 35 core genes and their regulators; G. Kaplan-Meier 
curve of DMFS in validating DATASET2, all patients were grouped to TNBC, nTNBC with same core expression profile with TNBC, and 
other nTNBC.
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A core co-regulatory module with 5 TFs and 35 
co-targeted genes was identified in TNBCac pattern, and 
these genes were positioned in the network which is highly 
associated with response to stimulus, immune response 
and signal transduction. For response to stimulus, seven 
related GOs were found in the top20 significant GOs. 
Previous studies also indicated that stimulus response was 
highly associated with EMT process, and environmental 
stress strongly affected the metabolic activity in breast 
cancer cells [34, 35]. For immune response, six related 
GOs were found in the top20 significant GOs. Immune 
response is complicated and could affect carcinogenesis 
by inflammation [36, 37], autoimmune [38] and immune 
escape [39] in TNBC. Our findings further indicated that 
this field was remarkable. For signal transduction, four 
related GOs were found in the top20 significant GOs. 
Many signaling pathways such as MAPK, Wnt, and 
Erk, were found crucial in TNBC [40–43], which could 
validate our findings.

Furthermore, the essentialness of these genes in 
cancer cell survival was investigated, especially the 
core 5 TFs in TNBCac pattern. MZF1, SOX10 and 
ZEB1 shRNAs displayed strong effect on survival 
of cancer cells. However, ETS1 and GATA2 seemed 
to be less crucial in the same system, which might 
be due to nonlinear dose-dependence or insufficient 
shRNA interference efficiency. When ruling out the 
two puzzling TFs, 3 core TFs in the module could still 
clearly distinguish TNBC cells from nTNBC cells by 
their essentialness scores, The expression of the 3 core 
TFs could not distinguish TNBC from nTNBC like their 
essentialness scores, suggesting that the importance 
of these 3 TFs in TNBC would mainly due to possible 
activation process (e.g. post-translational modification) 
but not the change at expression level.

MZF1 was found crucial in osteopontin-driven 
MSC-to-CAF transformation, which promoted tumor 
growth in a microenvironment dependent manner [44]. 
MZF1 is also a regulator of ERCC1 and affects DNA 
damage/repair pathway, which is essential in chemo-
resistance [45]. SOX10 was reported to be preferentially 
overexpressed in TNBC [46] and appeared to be a part of 
a highly coordinated transcriptional program characteristic 
for basal-like features [47]. As a well-studied TF, ZEB1 
was highly involved in EMT process and also reported 
promoting migration in TNBC cells by regulating 
androgen receptor (AR) [44]. Additionally, it could also 
enhance tumorigenicity and breast cancer cell plasticity 
[48]. The 3 core TFs were all found to influence TNBC 
crucially, but their co-activation was not reported. Our 
results suggested exploring them as a whole module 
propounds a further investigation of their co-regulation 
and co-targeting profile.

Additionally, the core targets genes showed a 
distinct discrimination between TNBC and nTNBC, not 

only at essentialness score level but also at expression 
level, which confirmed our hypothesis that the core 3 TFs 
promoted TNBC related biological process by regulation 
of the expression of the core target 35 genes.

Classifying breast cancer by only three markers 
(ER, PgR, HER2) is rough, and the definition of 
TNBC did not seem to be rigorous [1, 8, 13]. Recently, 
development of new technology and algorithm makes 
it possible to divide breast cancer patients to subgroups 
more scientifically [1, 13]. Focusing on the heterogeneity 
of TNBC, many sub-classification systems were 
developed. However, the heterogeneity of nTNBC was 
not so appealing even though the prognosis of which 
varies much more [1]. By clustering patients with our 
own signature based on the core module found in TNBC, 
nearly all TNBC patients were clustered into the same 
subgroup while some nTNBC patients were also clustered 
with TNBC. In other words, we identified a TNBC-like 
nTNBC subgroup, which also showed a similar prognosis 
as TNBC. Furthermore, this classification system was 
applied in three different cohorts with more than 1000 
patients, which conferred this signature close to clinical 
translation. Compared with the most widely used breast 
cancer molecular classification system PAM50, which 
included genes with certain functions in breast cancer 
[49, 50], our signature focused mainly on translational 
regulatory features in TNBC and included a whole co-
regulatory module. There is little overlap in candidate 
genes between PAM50 and our signature, so that our 
signature would be a very important complement to 
PAM50.

In summary, we established TF-gene regulatory 
networks in TNBC, found three different patterns, and 
identified a core TF co-regulatory module comprised of 5 
TFs and 35 target genes. These core genes exhibited strong 
effect on cancer cell survival and growth. Furthermore, 
the 3 core TFs could distinguish nTNBC cell lines from 
TNBC cell lines by their “essentialness profile”. The 35 
core target genes could distinguish nTNBC cell lines 
from TNBC cell lines by both expression profile and 
“essentialness profile”. The overall expression profile of 
the core targets and their regulators identified a TNBC-
like subgroup of nTNBC, whose prognosis was more 
analogous to TNBC than to other nTNBC, suggesting a 
promising clinical application perspective. Generally, 
our results demonstrated a novel and biologically 
reasonable view to TNBC and enabling nTNBC subtype 
re-classification based on a TNBC-associated manner. 
In addition, the methods we described here are not only 
limited to the analysis of TNBC but also are generalizable 
to other complicated diseases that demonstrate subtype-
specific characteristics, especially those without well-
defined molecular targets.
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MATERIALS AND METHODS

Data acquisition and preparation

Microarray gene expression data from 63 normal 
breast (NORM) tissue samples, 445 non-triple-negative 
breast cancer (nTNBC) tissue samples and 89 triple-
negative breast cancer (TNBC) tissue samples were 
downloaded from TCGA (http://cancergenome.nih.gov/) 
for primary analysis and TF-targets network construction 
[25, 26]. Datasets NKI (http://ccb.nki.nl/data/) and 
GSE3494 (http://www.ncbi.nlm.nih.gov/geo/) were used 
for validation [31, 32]. Robust Multichip Average (RMA) 
[51] method was used for normalization.

Position weight matrix (PWM) data of 130 
core TF binding sequence motifs in vertebrates were 
downloaded from JASPAR database [52]. Each motif 
matrix is used to scan the entire human genome and a 
threshold value of p<10-5was used to determine motif 
sites. For each motif, we determined its target genes as 
those whose promoter regions, defined as [−750, 250] 
base-pairs flanking their transcriptional start sites (TSS), 
contain at least one motif site. For protein-protein 
interactions (PPI), we used a publicly available dataset 
as an estimate [53].

The Cancer Cell Line Encyclopedia (CCLE) (http://
www.broadinstitute.org/ccle) database and Achilles 
database (http://www.broadinstitute.org/achilles) [27–30] 
were downloaded. 212 cell lines (13 breast cancer cell 
lines included) with both mRNA expression data and 
shRNA level scores data were integrated for subsequent 
analyses.

Network construction and comparison

The PANDA software (http://sourceforge.net/
projects/panda-net/) was used for network construction 
[19, 23, 24]. Networks of NORM, nTNBC and TNBC 
were constructed by integrating the corresponding TCGA 
expression, TF motif and PPI data (update parameter 
α=0.25). A cutoff of FDR adjusted p<0.05 was used to 
determine significant edges.

TFs co-regulation analysis and target profile 
merging

The hypergeometric distribution model was applied 
to evaluate the overlap between target genes shared by 
different TFs. All significant 2-TFs co-regulation genesets 
were mutually merged for intersections. Genes intersected 
from four or three 2-TFs co-regulation genesets were 
defined as 4-TFs or 3-TFs co-regulation genesets, 
respectively, and were then evaluated with the same 
hypergeometric distribution model. Larger (5-8-TFs) gene 
sets were gained by a next merging step with all significant 
4-TFs co-regulation genesets.

Core network extension and GO enrichment 
analysis

The core 35 target genes were reset to TNBC 
network and their neighbors in this network were looked 
up by a “network walking” method as described in the 
following. All TFs regulated more than 10 of these 35 
genes were selected as intermediators, while all genes co-
regulated by more than 20 intermediators were chosen as 
neighbors of these 35 genes and used for gene ontology 
(GO) enrichment analysis (biological process [BP] 
category, performed by R packages). The hypergeometric 
distribution model along with a false discovery rate (FDR) 
adjustment was used for significance evaluation.

Cell culture, small interfering RNAs transfection 
and CCK8 analysis

Breast cancer cell lines MCF7, ZR75, MDA435, 
MDA453, MB231, BT20, HS578T, and HCC1937 were 
purchased from American Type Culture Collection (ATCC) 
and maintained in standard conditions. Transfection was 
performed with Lipofectamine 2000 (Invitrogen, Carlsbad, 
CA) according to the manufacturer’s protocol. Targeted 
sequences for small interfering RNA (siRNA)-induced 
silencing were all listed in Supplementary Table 2.

Cell suspension (100 μL/well) was inoculated 
in a 96-wellplate, pre-incubated in a 37°C humidified 
incubator (5% CO2). After each of the 0, 24, 48, and 72 h 
time points, 10 μL of the CCK8 reagent from Sigma (St.
Louis, MO) was added to each well of the corresponding 
plate. The plate was incubated for two additional hours 
and the 450nm absorbance was measured.

Western blot and real-time RT–qPCR

Cell total RNA was extracted with Trizol reagent 
(Invitrogen) and cDNA was synthesized from at least 
3μg of total RNA using oligo (dT) and random hexamer 
primers. All primers (synthesized by GenePharma) used 
for RT–qPCR were listed in the Supplementary Table 3, 
and qPCR settings were 94°C  for 2 min followed by 35 
cycles of 94°C 15 s, 56°C 20 s and 72°C 30 s and then 
followed by 72°C for 2 min.

Cell total proteins were obtained by homogenization 
in 2× loading buffer, resolved by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis and subjected to 
western blot with corresponding antibodies. Anti-MZF1 
and anti-SOX10 antibodies were purchased from Cell 
Signaling Technology (Beverly, MA). Anti-ZEB1 antibody 
was purchased from Abcam (Cambridge, MA).

Patients clustering and survival analysis

All patients were clustered by a k-means method, 
where k was set to 3 (NORM, nTNBC and TNBC) or 2 
(when only nTNBC and TNBC were considered). Genes 
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were clustered by hierarchical clustering. Expression 
levels of all genes were normalized by row before heatmap 
visualization. Kaplan-Meier analysis and Log-rank test 
were used to evaluate survival rates.

Statistical analysis

All statistical tests were 2-sided and performed 
using R 3.1.2 software (www.r-project.org). p<0.05 
was considered statistically significant unless otherwise 
mentioned. A cutoff value of FDR<0.1 was used for 
multiple comparisons. R packages ggplot2, VennDiagram, 
and pheatmap were used for data visualization; Mygene, 
GEOquery and GOstats were used for gene symbol 
mapping and GO enrichment. R packages survival and 
MASS were used for survival analysis.
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