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Abstract 

Background 

There is growing evidence that many diseases develop, progress, and respond to therapy 
differently in men and women. This variability may manifest as a result of sex-specific 



structures in gene regulatory networks that influence how those networks operate. However, 
there are few methods to identify and characterize differences in network structure, slowing 
progress in understanding mechanisms driving sexual dimorphism. 

Results 

Here we apply an integrative network inference method, PANDA (Passing Attributes 
between Networks for Data Assimilation), to model sex-specific networks in blood and 
sputum samples from subjects with Chronic Obstructive Pulmonary Disease (COPD). We 
used a jack-knifing approach to build an ensemble of likely networks for each sex. By 
adapting statistical methods to compare these network ensembles, we were able to identify 
strong differential-targeting patterns associated with functionally-related sets of genes, 
including those involved in mitochondrial function and energy metabolism. Network analysis 
also identified several potential sex- and disease-specific transcriptional regulators of these 
pathways. 

Conclusions 

Network analysis yielded insight into potential mechanisms driving sexual dimorphism in 
COPD that were not evident from gene expression analysis alone. We believe our ensemble 
approach to network analysis provides a principled way to capture sex-specific regulatory 
relationships and could be applied to identify differences in gene regulatory patterns in a wide 
variety of diseases and contexts. 
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Background 

Chronic respiratory diseases, including Chronic Obstructive Pulmonary Disease (COPD), are 
among the most likely causes of death in the United States; COPD ranks third only after heart 
disease and all forms of cancer combined [1]. In the past COPD was thought to primarily 
affect males, but in recent years the number of females with COPD has greatly increased, and 
currently more women die of COPD than men [2]. Some of the changing epidemiology is 
likely due to an increase in female cigarette use during the 1960s. However, current research 
also suggests biological causes for the apparent sexual-dimorphism in the disease, with 
women having a higher susceptibility [3-5], an overall more severe COPD course even with 
the same level of tobacco exposure [6], and an increase in severe symptoms at a younger age 
[2,7]. 

Investigating sex differences in disease is a critical area of investigation [8,9] and a wide 
number of diseases are known to effect men and women differently [10]. It has been noted 
that many sexually dimorphic features are likely not primarily due to genetic variation [11]. 
On the other hand, network-modeling of transcriptomes in model organisms has 
demonstrated sexually dimorphic higher-order gene interactions [12]. Consequently, systems-
based approaches have great potential for exploring sex-differences in human traits [13,14]. 



In this study we leverage gene expression data from subjects with COPD to build sex-specific 
networks and investigate whether alterations in gene regulation might contribute to sexual-
dimorphism in COPD. The methods described here are not limited to analysis of lung disease 
but are generalizable to other diseases that demonstrate sexually dimorphic characteristics. 

Gene regulation involves the concerted activity of many distinct but non-independent 
regulatory mechanisms [12,14]. While no single experimental assay can fully capture the 
complexity of a given biological system, each provides information concerning a particular 
feature that influences, or results from, the state of a cell. Because of the complexity of gene 
regulatory processes, there is increased interest in modeling approaches capable of integrating 
multiple sources of regulatory information [15-19], and evidence suggests that these methods 
perform much better than those using individual data types in isolation [20]. 

Along these lines, we developed PANDA (Passing Attributes between Networks for Data 
Assimilation) [21], a “message passing” network inference method that integrates multiple 
types of genomic data. PANDA models information flow through networks under the 
assumption that both “transmitters” and “receivers” play active roles in modulating 
regulatory processes. In PANDA’s model of gene regulatory control, transcription factors are 
the transmitters and the receivers are their target genes. A set of initial connections linking 
transcription factors to potential downstream targets is inferred by mapping transcription 
factor binding sites (TFBS) to the genome. Gene expression profiles provide information on 
shared activation states for elements in the network and protein-protein interaction data 
provide information on co-regulatory processes. PANDA starts with initial networks and then 
uses the various data to iteratively update the network structures to more accurately fit the 
available information, until the process converges on a consensus regulatory network. 

In applying PANDA, we construct phenotype-specific models and then look for variation in 
TF-target interactions (“edges”) to explore regulatory differences. One surprising result of 
applying PANDA in such a comparative analysis is that we are able to observe meaningful 
changes in regulatory patterns even for genes that are not differentially expressed [22]. 

The comparative analysis of phenotype-specific networks enabled by PANDA makes it 
particularly useful for studying sexual dimorphism in health and disease, where the absolute 
levels of gene expression in disease may be similar in male and female tissues but in which 
different regulatory processes may be active [14], including differences in transcription factor 
regulation in the presence of sex hormones [23,24]. If this is the case, identifying sexually 
dimorphic network variability and associating these network characteristics with specific 
disease processes can lead not only to a better understanding of the disease, but also to 
therapies optimized for men and women. 

In this study we begin by analyzing blood and sputum gene expression data from subjects 
with COPD. We then explore whether gene regulatory networks, estimated using these data, 
contain sex-specific regulatory patterns. To do this we use PANDA to model “ensembles” of 
sex-specific regulatory networks in COPD and use these network ensembles to identify 
differences in network topologies that are associated with biological functions in a sex-
specific manner. As opposed to analyzing or contrasting the properties of single networks, 
this ensemble approach to network analysis allows for the statistical quantification of network 
features. In this application, we demonstrate how Gene Set Enrichment Analysis (GSEA), 
which was originally designed to quantify the association of gene sets with differential 
expression changes, can be used to estimate the association of gene sets with alterations in 



network features in light of this ensemble approach. However, more generally, our ensemble 
approach to network modeling allows for the principled investigation of differences in 
network properties using statistical tools developed for genomic and other high-dimensional 
data. 

Results and discussion 

Genes and gene sets are not strongly differentially-expressed between males 
and females with COPD in either blood or sputum 

We obtained and analyzed gene expression data in sputum and blood samples from 132 
subjects (44 females and 88 males) with COPD enrolled in the ECLIPSE study [25]. 
Affymetrix CEL files were downloaded and normalized using RMA [26], with probe-sets 
mapped to Entrez-gene IDs using a custom CDF [27]. An initial quality control of this data 
was performed by running a principal component analysis on the expression values for the 24 
probe-sets located on the Y chromosome. A plot of the first versus the second principal 
component (Additional file 1: Figure S1A) indicates that although most samples cluster 
according to the sex ascribed in the phenotype data, there are six samples which do not 
cluster as expected. To minimize potential noise due to poor quality data or sex 
misclassification, we eliminated these six subjects from further consideration, leaving 42 
female and 84 male COPD subjects with both sputum and blood gene expression data. A 
principal component analysis plot for these remaining samples, generated using expression 
information for genes located on the Y chromosome, is shown in Figure 1A; age, COPD 
Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage based on spirometry 
and pack-years of cigarette smoking for the corresponding subjects are shown in Figure 1B. 
We compared the age, COPD GOLD stage and pack-years of cigarette smoking between men 
and women and observe significant differences in age and pack-years but no significant 
difference in disease stage. This is consistent with previous observations that women often 
get similarly severe COPD at a younger age and with less smoke exposure [2,6,7] and 
highlights the importance of understanding the biologic features mediating sexual 
dimorphism in COPD. All subjects included in this analysis are former smokers. 

Figure 1 Comparison of males and females with COPD using a standard differential-
expression analysis approach. (A) A PCA analysis on expression data using genes located 
on the Y chromosome. Males and females cluster into two groups. (B) Covariate information 
for the 42 female and 84 male subjects included in the analysis. The statistical difference 
between sexes for age and pack-years was calculated using an unpaired two-sample t-test and 
the statistical difference between the sexes for GOLD stage was calculated by applying a chi-
squared test to a two by three (sex by stage) contingency table. (C) The top most 
differentially-expressed genes based on a using an unpaired two-tailed t-test (after 
specifically excluding genes those on the sex chromosomes). Genes with higher average 
expression in female are colored pink and those with higher average expression in male are 
colored blue. (D) The results of a GSEA analysis looking for GO category differential-
expression between males and females. The five most differentially-expressed GO categories 
in males and females in either sputum or blood are shown. Deeper shades of pink are used to 
denote greater significance in female while deeper shades of blue indicate greater 
significance in males. The scale is based on the –log FDR significance for categories 
enriched in females, resulting in positive values, and on the + log FDR significance for 
categories enriched in males, resulting in negative values. Note that the color-range extends 



to an FDR significance of 10−3 in each sex even though the most significant categories found 
in this analysis only reach an FDR significance of around 10−2. (E) GSEA “enrichment plots” 
for the two most significantly differentially-expressed GO categories according to the GSEA 
analysis in males and females in either sputum or blood. 

For the remaining 126 subjects, a genome-wide differential expression analysis including the 
sex chromosome genes serves as a strong positive control on the expression data as the 
results identify many expected sex-related differences (Additional files 1: Figure S2 and 
Additional file 1: Tables S1–S2).We next excluded genes on the sex chromosomes and tested 
if autosomal genes were strongly differentially-expressed between males and females in 
either the sputum or blood samples, using an unpaired two-sample t-test. Using the sputum 
samples, no genes are significantly differentially expressed between males and females at an 
FDR less than 0.1. Only eight autosomal genes (listed in Figure 1C) are significantly 
differentially-expressed in blood between female and male COPD subjects at an FDR 
threshold of 0.1, suggesting that the removal of sex chromosome genes largely mitigates the 
sex-specific gene expression signal. Consequently, subsequent analyses exclude genes on the 
sex chromosomes. 

Although very few autosomal genes are significantly differentially-expressed when 
comparing samples from males and females, it is still possible that groups of interacting 
genes, representing particular biological functions, might be collectively differentially-
expressed in a sex-specific manner. We evaluated this possibility by performing Gene Set 
Enrichment Analysis (GSEA) [28]. We downloaded the java implementation of GSEA 
(http://www.broadinstitute.org/gsea/) and tested for the collective sex-specific differential 
expression for sets of genes annotated to Gene Ontology (GO) functional categories. GSEA 
uses a gene-by-sample table of expression values and information concerning sample features 
(in this analysis, subject sex) to rank genes based on their differential expression. It then uses 
this ranking to test if sets of genes (for example, those annotated to a particular GO term) 
have consistent changes in expression patterns, in our case, consistently higher expression 
levels in one sex compared to the other. 

Figure 1D shows the five most differentially-expressed functional gene sets (hereafter, simply 
“functions” or “GO terms”) in males and females for both sputum (top panel) and blood 
(bottom panel). Several of the corresponding GSEA enrichment plots are presented in Figure 
1E. Although the top functions are only marginally significant, both the blood and sputum 
analysis includes several interesting results. In sputum, the most differentially-expressed 
functions reach an FDR significance in the range of 0.01 to 0.15 and include GO terms such 
as “sterol biosynthetic process” and “steroid hydrolase activity”, which may play a role in 
sexual dimorphism. The GO functions more highly expressed in COPD blood samples in 
males compared to females include “cell killing” and “phagocytosis”, processes potentially 
related to COPD pathogenesis and severity [29,30]. 

Jack-knifing can be used to robustly estimate and compare regulatory 
networks 

We also used a two-sample f-test to evaluate if the variance of any of the autosomal genes’ 
expression levels was significantly difference between females and males. We observe that in 
sputum samples over 1000 genes are differentially-variable at an FDR less than 0.1. We 
include these genes in Additional file 2. This observation, together with the plausible 
functional enrichment results, led us to next hypothesize that the differential targeting of 



biological functions may play a critical role in sexual dimorphism in COPD. Specifically, it is 
possible that genes are differentially co-expressed, even if their overall average expression 
levels are not significantly different. If this differential co-expression is taken as evidence of 
differential co-regulation, as is done in PANDA, then potential transcription factors that are 
differential-targeting these genes can be identified (Additional file 1: Figure S3). 

It has been suggested that regulatory relationships between transcription factors and genes 
likely have both stochastic and deterministic components, and thus may be better modeled by 
probability distributions as opposed to simple Boolean relationships [31,32]. Furthermore, in 
this application we recognized that differences in sample size between males and females 
could potentially influence predictions of regulatory network interactions. Motivated by this, 
we used PANDA [21] to calculate ensembles of networks based on jack-knifed sets of 
samples drawn from our initial male and female subject populations (Figure 2A). 

Figure 2 Using ensembles of networks to robustly identify sex-specific interactions and 
their associated genes. (A) A cartoon summary of how we use PANDA to build ensembles 
of networks using a jack-knifing approach to resample the original expression data multiple 
types. (B-D) Volcano plots of the difference in mean edge weight across two ensembles of 
networks compared to the p-value of the difference in the edge weight distributions in the two 
ensembles. Comparisons include (B) female versus male sputum networks, (C) female versus 
male blood networks, (D) female versus male “random” networks. Edges identified as 
“different” in each comparison are shown as either pink (female-specific) or blue (male-
specific). (E-G) Venn diagrams showing the overlap in genes targeted by the female-specific 
(pink) or male-specific (blue) edges. Note that a gene can be targeted by both a male-specific 
and a female-specific edge, but by different upstream transcription factors. There is a high 
level of overlap in the genes targeted by the identified sex-specific edges in both the sputum 
and blood networks. (H-J) A hypergeometric probability was used to determine the 
significance of overlap in male-specific genes with genes annotated to GO categories, and 
female-specific genes with genes annotated to GO categories. The top five categories 
enriched in the males and females for each comparison are shown. 

Specially, As an input to PANDA, we constructed transcription-factor target networks using 
position-weight-matrices for 130 TFs recorded in the Jaspar database [33], mapping these to 
the promoter regions, defined as [−750,+250] base-pairs around the transcription start site. 
We also include information regarding physical protein-protein interactions between human 
transcription factors [34]. To build ensembles of networks, we used a “jack-knife” [35], 
randomly selecting ten samples without replacement to create 400 gene expression data sets, 
100 for each of four sample sets (blood-female, blood-male, sputum-female, sputum-male). 
We then used PANDA to infer networks for each expression data set. As a negative control, 
we also created a version of the sputum expression data with a permutation of gene labels, 
and built sex-specific ensembles of networks for this randomized data. 

This jack-knifing approach ensures that the predicted network edges are not strongly 
influenced by any one subject, as each network in our ensembles represents an estimate of the 
cellular regulatory network for a subset of the relevant samples. It also helps us regularize 
differences in sample size between the sexes as each of the reconstructed networks contains 
information from the same number of subjects. Further, our male and female ensembles each 
include one hundred networks, giving us the power to quantify the statistical properties of the 
estimated regulatory edges, something that would have been difficult or impossible had we 
simply estimated a single network for each sex and tissue-type combination. Although the 



jack-knifing approach does not allow us to directly model covariates (for example, 
differences in COPD severity or smoking histories), it helps mitigate their effect on the 
network predictions by modeling a distribution of networks, which are, on average, 
representative of the population, but whose variance likely represents the contribution of 
other factors. 

We used an un-paired two-sample t-test to quantify differences in the distributions of 
predicted edge-weights between the sex-specific network ensembles. We also averaged the 
predicted edge weight across the networks in each ensemble, excluded edges with low 
average weights (<0) and, for the remaining edges, determined the difference in these average 
edge weight values between the ensembles. Figure 2B-D shows volcano plots of the 
difference in the average of each edge’s weight between the ensembles being compared, 
versus the FDR significance in the difference of edge weight distributions based on the t-test. 
We immediately observe that edge differences in the “random” volcano plot are not nearly as 
strong as those in the sputum and blood volcano plots; however, there are some differences, 
including edges that are “significantly” different according to the t-test. Consequently in this 
following network edge analysis we use a more stringent FDR cutoff than we did with the 
gene expression analysis. 

We used a combination of the difference (absolute value >0.25), significance based on the t-
test (FDR <10−5) and average edge weight (>0) to select differentially-called edges for each 
ensemble comparison. Female- and male-specific edges are shown in pink and blue, 
respectively, in Figures 2B-D. These criteria were chosen such that each sex-specific 
subnetwork contains edges that are both likely to be real (based on a positive edge weight) as 
well as different, both at an absolute and at a statistical level. The cutoff values themselves 
were selected such that each subnetwork contains between one and five percent of all 
possible edges, which may be close to an expected network density. We applied these same 
cutoffs to the “random” volcano in order to quantify the level of false positives in the 
differential subnetwork edge calls. Although there are likely false-positive edges in our 
identified subnetworks, for the selected cut-offs there are approximately 2.4 and 9.4 times 
more differentially-called edges in the sputum and blood volcanos compared to the random 
volcano, respectively. We note that this randomization control also illustrates that statistical 
differences calculated by contrasting various network properties should be viewed primarily 
as a rank-ordering as opposed to a true significance level. 

We determined the genes targeted by these sex-specific edges and present the results as Venn 
diagrams (Figure 2E-G). Many genes (5389 in sputum and 8133 in blood) are targeted in both 
male and female subnetworks, although the network models indicate the regulation is 
governed by different transcription factors. This may partially explain why we previously 
observed only minimal differential gene expression patterns between the sexes; our network 
results suggest that although genes may be similarly expressed in both sexes, this is mediated 
by a distinct set of transcriptional regulators. 

To assess whether the genes targeted in only one sex-specific subnetwork and not the other 
might be associated with specific biological functions, we used Fisher’s exact test to evaluate 
the enrichment of GO categories in these genes and observe some functional enrichment 
(Figure 2H-J). The signal appears to be strongest for the genes uniquely targeted in a sex-
specific manner in the sputum-derived networks (Figure 2H); the sputum samples may be 
biologically “closer” to the disease as a lung source sample and may represent cellular 
process most likely to be associated with COPD. 



Network ensembles uncover differential-targeting patterns in men and women 
with COPD 

We recognize that there are significant limitations to studying functional enrichment in a 
context that relies upon somewhat arbitrary thresholds in order to define differential 
subnetworks (Figure 2B-J). Firstly, this type of approach can be sensitive to the cutoffs used, 
opening the opportunity for potentially biased results when not used with caution. 
Additionally, selecting genes based on whether they are or are not targeted in a pair of 
networks ignores any relative level of differential targeting. Specifically, we observe a high 
level of overlap in target genes when comparing male and female subnetworks (see Figure 
2E-G); however, there are multiple instances when a gene is targeted by many transcription 
factors in one subnetwork but by a much smaller number, or even a single TF in the other. 
Although we excluded these commonly targeted genes in the analysis shown in Figure 2E-J, 
one could imagine they might play a significant role in sex-specific differences in COPD. 

Motivated to overcome these limitations, we next used the ensembles of networks generated 
by PANDA in a manner analogous to how we used the expression data to evaluate 
differential-enrichment of GO functions between the sexes. We previously observed that 
some sets of functionally-related genes are weakly differentially-expressed (Figure 1D); here 
we wish to address a similar, but distinctly different question within the network context. 
Namely, are sets of functionally-related genes differentially-targeted? In other words, do a set 
of functionally-related genes tend to have an increase (or decrease) in regulatory targeting in 
one sex-specific regulatory network context compared to another? 

In this analysis, instead of sets of expression samples associated with disease state and sex, 
we have sets of regulatory networks. Specifically, we have one hundred corresponding 
representative networks for each set of expression samples, and therefore one hundred 
predicted scores for each edge in those networks. Figure 3A shows a heat map of those scores 
for the male and female sputum networks. Some edges have consistently higher predicted 
edge weights in the male networks while others have consistently higher predicted edge 
weights in the female networks. We would like to relate these differences in network 
structure to differences in the regulation of biological functions. 

Figure 3 Visualization of edge weight and the in- and out-degree of genes and TFs in 
ensembles of sputum networks. (A) Edge weights for every possible transcription factor to 
gene interaction, where each row represents an edge, and each column represents one of the 
networks produced in the jack-knifing approach. Rows are ordered based on the t-statistic 
comparing the edge weight values and each row is Z-score normalized for visualization 
purposes only. (B) The in-degree, defined as the sum of all incoming edge weights, for each 
gene in the PANDA network reconstruction. Genes (rows) are ordered based on the t-statistic 
comparing the gene in-degree distributions in the two ensembles of networks (columns). 
Again, rows are Z-score normalized only for visualization purposes. (C) The twenty-five 
most differentially-targeted genes, identified as having the most significant difference in in-
degree in the male compared to the female ensemble of networks. Both the significance of the 
differential-targeting and the level of differential-expression is shown. (D) The out-degree, 
defined as the sum of all outgoing edges, for each transcription factor in the reconstructed 
networks. Rows represent transcription factors and are again ordered based on the t-statistic 
comparing the distribution of in-degree values of the transcription factor in the two 
ensembles of networks. (E) The ten most differentially-targeting transcription factors, and 



their level of differential-expression. The majority of the differentially-targeted genes and 
differential-targeting transcription factors are not differentially-expressed. 

To begin to address this question, within each of our sex-specific PANDA predicted 
networks, we assigned every gene a score based on its “in-degree”, which is defined as the 
sum of the weights of all edges pointing to that gene. Figure 3B shows the in-degree values 
side-by-side for the male and female sputum networks. We sorted genes in this figure based 
on the statistical difference in the in-degree values between the two network ensembles, as 
measured by an unpaired two-sample t-test. As with the edges, we observe that some genes 
are consistently much more highly targeted in the male networks, while others are 
consistently much more highly targeted in the female networks. The twenty-five most 
differentially-targeted genes, based on the t-test comparison, are shown in Figure 3C. As a 
control for this analysis we also reconstructed one hundred networks built after permuting the 
sex-labels of the subjects (Additional file 1: Figure S4A). We observe that the differential-
targeting observed for these genes is much greater than expected by chance. 

Our calculated in-degree values give an indication of how heavily a gene is targeted in a 
given network. Edge-weights predicted by PANDA correspond to how likely a given 
regulatory interaction is to exist and edges that represent either activating or repressing 
interactions can have similarly high weights. Consequently, genes with relatively higher 
degrees are not necessarily “more activated,” they may in fact be repressed (if they are highly 
targeted by more repressors than activators), or neither (if they are equally targeted by both 
activators and repressors). Therefore, a change in a gene’s degree between two sets of 
networks is not necessarily related to either an increase or decrease in its expression level, but 
instead suggests changes in its regulatory control. Consistent with this framework, even the 
most strongly differentially-targeted genes do not appear to be strongly differentially-
expressed (Figure 3C). We therefore suggest that these differences in gene targeting likely 
represent a sexually-dimorphic disease-related re-wiring of the cellular network and that 
understanding the biological implications of these structural changes may provide insight into 
the mechanisms driving disease morphology and lead to suggestions for sex-specific 
therapies. 

We also calculated the “out-degree” of TFs in these networks, or the sum of the weights of all 
edges pointing from a TF, and show the results in Figure 3D-E. As before, we observe strong 
sex-specific differences in targeting patterns, even though the TFs themselves are not 
differentially-expressed. These results suggest that differences in regulatory patterns in the 
absence of strong differential expression exist around the regulating TFs as well as the 
regulated genes. Thus the sex differences we observe appear to be strongest at the level of the 
network “edge” and not necessarily in the individual “node” (gene and TF) states. 

Biological functions are strongly associated with sexually-dimorphic targeting 
in COPD subjects 

Our analysis suggests that although there is little difference in gene expression levels between 
males and females with COPD in either blood or sputum, there are likely different regulatory 
mechanisms associated with and potentially mediating the disease state. If this is true, one 
would expect that alterations in network structure should be concentrated around genes 
representing particular functional classes representing changes in the mechanisms of 
activation, rather than downstream changes in gene expression. Therefore, next we sought to 
identify sexually dimorphic differentially-targeted functions. We created “gene-by-network” 



tables for each ensemble of networks, where the values are the in-degrees of the genes (the 
level of targeting identified by PANDA) in each of our predicted networks. We then ran 
GSEA using these in-degree values instead of expression to evaluate if functionally-related 
sets of genes gain or lose targeting. 

Running GSEA on differential gene-degree leads to some striking results (Figure 4A). First, 
despite the lack of strong differential-expression noted previously, directly comparing male 
versus female networks using this enrichment method reveals strong patterns of differential-
targeting, with many functions that have significantly (FDR < 0.01) more targeting in the 
female compared to the male networks (Figure 4A). Differential-targeting of these functional 
categories is absent in networks reconstructed after permuting the sex-labels (Additional file 
1: Figure S4B). Furthermore, the results are highly consistent when comparing female and 
male networks built using either the sputum or blood samples (although there is overall 
greater enrichment for differential-targeting of functions in the sputum). In contrast, repeating 
the analysis using networks constructed from “random” expression data shows no strong 
differential-targeting patterns. 

Figure 4 Sexually-dimorphic targeting of biological functions in Sputum and Blood 
networks. (A) All GO categories significantly differentially-targeted (FDR < 0.01) using a 
GSEA-type approach to compare gene targeting in male and female networks derived from 
either sputum or blood expression data. Many functional categories have genes that appear to 
be much more highly targeted in the female networks compared to the male networks. There 
is a high level of agreement between the differential-targeted GO categories in both the 
sputum and blood networks, but the enrichment disappears in the “random” networks. (B) 
The ten most differentially-targeted pathways enriched in the female and the male sputum 
networks. 

Closer inspection of the differentially-targeted functions shows many to be highly-related 
based on their biological role and gene content. Figure 4B shows the ten most differentially-
targeted functions in females and males in sputum. A closer inspection of the expression 
levels of the genes annotated to these top functional categories shows that they appear to be 
associated with disease stage (Additional file 1: Figure S5), supporting their relevance to 
COPD. The pathways most significantly targeted in men are related to type I interferon, 
which has previously been implicated in the sexual dimorphism in response to viral infections 
(drivers of COPD exacerbations) [36,37] and in autoimmune diseases [38]. They are also 
consistent with previous observations that immune functions are enriched in male COPD-
associated genes [39]. The pathways more highly targeted in women are all related in some 
way to mitochondrial function, which has previously been implicated in the modulation and 
development of lung disease [40,41]. Cigarette smoking has also been shown to change 
mitochondrial morphology [42] and abnormal mitochondrial function is described in patients 
with COPD [43,44]. 

Because of its maternal inheritance [45,46], the mitochondria has long been associated with 
sex-differences. Sex hormones play an important role in controlling mitochondrial biogenesis 
and activities [47-50]. In neuronal cells ER-beta is localized in the mitochondria and mediates 
mitochondrial vulnerability to oxidative damage [51,52]; it also impairs mitochondrial 
oxidative metabolism in mesothelioma [53]. Interestingly, estrogen receptors are reduced in 
the mitochondria of epithelial cells from asthmatic lungs [54]. In addition, multiple 
peroxisome proliferator-activated receptors (PPARs), a class of nuclear hormone receptor 
proteins, have lower expression levels in COPD patients. This activity corresponds to lower 



expression levels of the PPAR-γ co-activator PGC-1α [55], a key regulator of energy 
metabolism [56] and an inducer of mitochondria biogenesis [57]. Thus differential-targeting 
of mitochondrial functions is consistent both with known biology concerning sexual-
dimorphism and COPD. 

We have performed two analyses to confirm that the strong differential-targeting of 
biological functions we observe in these networks is not a consequence of our specific 
approach. First, we repeated the ensemble network reconstruction on the sputum expression 
data, but modified our sampling technique to match covariates between each selected set of 
ten female and ten male samples; the conclusions of this covariate-matched analysis are 
nearly identical to what we observe with the random sampling (Additional file 1: Figure S6). 
Secondly, we ran (1) one hundred GSEA differential-expression analyses, one for each set of 
ten versus ten expression samples, and (2) one hundred GSEA differential-targeting analyses, 
one for each female versus male network reconstructed from these samples. Across these 
analyses we again observe consistently strong differential-targeting of many biological 
functions (Additional file 1: Figure S7). 

Transcription factors mediate differential-targeting patterns in COPD 

To gain a better appreciation for the network-level patterns that might be driving the 
identified functional alterations, we constructed a gene-by-TF matrix of the t-statistic values 
associated with the differences in edge weights predicted for the female compared to the male 
sputum networks and performed a complete-linkage hierarchical clustering using a Pearson 
correlation coefficient distance (Figure 5A). The resulting heatmap, where the rows are genes 
and the columns are transcription factors, shows clear patterns involving sets of transcription 
factors differentially-targeting sets of genes in the female and male networks. Given these 
results, we next sought to identify if particular transcription factors might be mediating the 
differential-targeting of biological functions between men and women. 

Figure 5 Transcription-factor differential-targeting of biol ogical functions. (A) A 
hierarchical clustering of the t-statistic associated with differential edge weight between 
ensembles of female and male sputum networks. Each point in the matrix represents the t-
statistic of an individual edge extending from a transcription factor (column) to a gene (row) 
(B-C) The statistical enrichment of GO categories in genes differentially-targeted by a 
transcription factor between male and female (B) sputum and (C) blood networks. All 
categories significantly (FDR < 0.01) differentially-targeted by at least one of the 
transcription factors, in the given tissue-type, is shown. The columns (transcription factors) 
are ordered identically to the hierarchical clustering in (A) and we observe a strong 
correlation with the transcription-factor differential-targeting of GO categories in (B). 
Although there is some similarity in the transcription-factor differential-targeting of these 
functional sets of genes in the sputum and blood networks, there is overall less enrichment in 
the blood comparison. 

For each jack-knife iteration PANDA calculates an edge weight for every possible 
transcription factor to gene interaction representing the likelihood that the TF regulates that 
target gene. We used this information to design TF-specific gene-by-network tables. We ran 
GSEA on these TF-specific tables to evaluate if any functions are more strongly targeted by 
an individual TF in one of our ensembles of networks compared to the other. The results of 
the female versus male comparison in both sputum and blood are shown in Figure 5B-C, with 
the transcription factors shown in the same order as in the hierarchical clustering and each 



row representing a biological function found to be enriched (FDR < 0.01) when contrasting at 
least one set of male or female TF-specific edges. We find more than 1000 GO functions 
differentially-targeted between the sexes by at least one transcription factor in sputum, and 
almost 900 in blood. As with the gene in-degree analysis we once again see much stronger 
differential-targeting of functions in the sputum network comparison relative to the blood 
network comparison. 

Disease-specific regulators of sexually-dimorphic functional targeting 

In order to better interpret this information, we focused on our previously-identified ten most 
differentially targeted functions (see Figure 4B) and present the TF-specific GSEA results in 
Figure 6A. We see overall consistency between the blood and sputum sexually-dimorphic 
targeting of these functions by individual transcription factors. However, a handful of 
transcription factors appear to have opposite patterns in the sputum and the blood networks. 

Figure 6 Identifying disease-specific drivers of sexually-dimorphic functional targeting. 
(A) Sputum (top panel) and blood (bottom panel) transcription-factor specific enrichment for 
differential-targeting of the top five GO functions identified in either males or females in 
Figure 4B. (B) A distribution of the similarity between differential-targeting patterns of 
transcription factors in sputum and blood network, as measured using the Spearman 
correlation. A red line indicates the cutoff used to identify transcription factors that have 
opposite sex-specific regulatory patterns in sputum compared to blood networks. (C-G) Plots 
comparing individual transcription factors’ sex-specific differential-targeting of these GO 
functions (five in female, filled shapes, and five in male, hollow shapes) in the sputum versus 
the blood networks. 

One limitation of directly comparing data from men and women with COPD is that without 
healthy controls it is unclear whether the systemic changes and high level of consistency we 
observe in the blood and sputum network analyses are important for sex-related differences in 
the disease or are a consequence of normal sex differences in cellular regulation. However, 
we reasoned that the sputum networks should be “closer” to lung disease, and thus 
transcription factors that are regulating biological functions in sputum but not in blood may 
be the most important drivers of sex-specific and disease-specific functional regulation. 
Therefore, to partially address our lack of healthy controls, we next directly compared the 
transcription-factor specific differential-targeting of functions in the sputum versus the blood 
networks. 

We quantified differences in transcription-factor level targeting of the ten functions in Figure 
6A by calculating, for each transcription factor, the Spearman correlation between the 
significance levels in the sputum sex-specific network comparison and the significance levels 
in the blood sex-specific network comparison. A distribution of these correlation values is 
shown in Figure 6B. 

Most transcription factors have a high positive correlation value, indicating that they are 
increasing/decreasing their targeting of these biological functions between men and women 
similarly in both sputum and blood networks. Some of this sexually-dimorphic targeting may 
be related to COPD, however, it is also possible, since this behavior was observed in both 
sputum and blood samples, that it is a consequence of normal sex-differences. On the other 
hand, there is a relatively smaller subset of transcription factors – those with negative 
correlation coefficients – whose sexually-dimorphic targeting of these important functions is 



opposite in the sputum and blood networks. We indicate the 23 transcription factors with 
correlation less than −0.4 by arrows in Figure 6A. 

The transcription factors most differentially-targeting these key functions between sputum 
and blood, based on our correlation measure, include the HAND1::TCFE2A complex, 
FOXF2, PAX4, the MYC::MAX complex, and SOX5 (Figures 6C-G). Both FOXF2 and 
SOX5 have been implicated in COPD or lung biology and it is interesting that we observe 
them in this sex-specific context. For example, FOXF2 has been shown to quantitatively 
increase binding upon smoke exposure in female mice [58] and modulates the expression of 
lung genes [59]. SOX5 is a candidate for COPD susceptibility and important for lung 
development [60]. 

A network model for sex-specific targeting of functionally-related genes in 
COPD 

The GSEA analysis we have performed based on the differential-targeting of genes is clearly 
very powerful and has led to the identification both of potential biological functions targeted 
in a sexually-dimorphic manner in COPD as well as several transcriptional regulators that 
may be mediating those differences. One strength of this analysis is that it relies upon 
characterizing network differences based on relative changes in targeting patterns. However, 
in doing so it also ignores the actual strength of predicted network interactions. In other 
words, if a gene is more targeted in one ensemble of networks relative to the other, that gene 
is highly implicated in the GSEA analysis, even if its input edges have low absolute edge-
weight values predicted across all the networks in both ensembles. It is unlikely that the 
systemic differential-targeting of functions we see across our panel of transcription factors in 
Figure 6A actually corresponds to multiple strong regulatory interactions from every one of 
them. 

To better appreciate the relationship between likely regulatory interactions and the results of 
our functional analysis, we next visualized subnetworks based on the female-specific and 
male-specific edges we previously identified (Figures 2B-C). In order to interpret our 
functional results in this regulatory network context we identified sex-specific edges that 
extend between the 23 disease-specific transcription factors and genes annotated to the top 
differentially-targeted functions. We illustrate the resulting subnetworks in Figure 7. Edges 
and genes are colored pink or blue based on whether they were identified as part of the 
female or male networks or functions, respectively. 

Figure 7 Illustrations of core subnetworks of sex-specific regulation in COPD. (A) The 
sputum subnetwork, defined by sputum sex-specific edges (as shown in Figure 2B) that 
extend between the identified disease-specific drivers (Figure 6B) and genes annotated to one 
of the top five differentially-targeted GO categories in ensembles of networks built based on 
sputum expression data (Figures 4B and 6). (B) The blood subnetwork, defined by blood sex-
specific edges (Figure 2C) that extend between the identified disease-specific drivers (Figure 
6B) and genes annotated to top five GO categories identified as differentially-targeted 
between male and female networks (Figures 4B and 6). Edges and genes are colored pink or 
blue based on whether they were identified as part of the female or male networks or 
functions, respectively. 

We observe that some transcription factors, such as CREB1 and ZFX target distinct sets of 
genes in both the male and female sputum networks. ZFX is the X-linked version of a protein 



that plays a role in molecular sex determination [61], so it may not be surprising that we 
found sex-specific differences in its regulatory patterns. However, it has also been implicated 
in lung cancer [62,63]. Similarly CREB is over-expressed in many cancers, including lung 
cancer [64], and, interestingly, has been shown to interact with the estrogen receptor and to 
have age and sex- dependent expression patterns in the human brain [65]. 

Several transcription factors dominate in one sex compared to the other. For example, the 
MYC::MAX complex appears to primarily target genes annotated to functions enriched in the 
female-specific sputum network (but not in the blood network) while SOX5 targets genes in 
the male-specific sputum network. USF1, in particular, appears to be a “hub” transcription 
factor for the female functionally related-genes in the sputum networks. 

USF1 both regulates and interacts directly with estrogen receptor (ER) in a protein complex 
[66], which may explain its female-specific activity. Estrogen has also been shown to induce 
USF1 to bind to the regulatory regions of several genes [67-69]. USF1 is involved in the 
cross-talk between hypoxia-related elements such as Aryl hydrocarbon receptor (AHR) and 
the estrogen receptor, inhibiting the former [70-72]. This relationship may be important in 
sex-specific COPD biology as AHR has previously been identified as potentially important 
for sex-specific differences in lung cancer [73]. 

Sex-specific effects of USF1 have been noted previously [74,75]. Consistent with our 
findings, it has been reported that in mouse liver, male gene signatures are enriched for 
functions such as immune response while female signatures are enriched in functions such as 
oxidoreductase activity and mitochondrion [75]. ChIP of USF1 in HepG2 cells also indicates 
that it regulates nuclear mitochondrial genes [76]. Most interestingly, however, is that fact 
that USF1 has been shown to bind to the promoter and mediate the expression of PGC-1α 
[77,78] which, as we previously noted, is an important regulator of mitochondrial biogenesis 
[57], and, along with several PPARs, has been shown to be expressed at lower levels in the 
skeletal muscle of COPD patients [55]. Therefore, it is not unreasonable to suppose that 
USF1, as indicated by our PANDA network analysis, may be an important mediator of 
mitochondrial-activity in a sexually-dimorphic manner in patients with COPD. 

Conclusions 

In this study we identified functionally related sets of genes that are strongly differentially-
targeted between men and women with COPD. Our results suggest that sexual dimorphism in 
features of COPD may be a consequence of the re-wiring of cellular networks around 
particular biological pathways, especially those involved in mitochondrial function and 
energy metabolism, leading to differences in COPD in men and women. Although these 
functions have previously been implicated in COPD, little is known about their disease- and 
sex-specific regulation. In addition, despite the fact that there is a large body of research 
concerning the structural features of individual regulatory networks [79-82], quantifying 
differences in network features is relatively understudied and there are few systematic 
approaches for characterizing variability in gene targeting. In our analysis we contrasted 
networks and identified functionally related sets of genes that are strongly differentially-
targeted between men and women with COPD. 

One of our most striking findings was clear differential-targeting patterns in the absence of 
similarly compelling differential-expression. Several potential biological mechanisms may 



play a role in mediating this differential targeting. One possibility is that multiple 
transcription factors compete for the same binding site upstream of a given target gene, but 
which one primarily regulates that gene is dependent on the cellular context (for example a 
change in protein abundance or conformation in response to sex hormones). Another 
possibility is that several transcription factors have potential binding sites upstream of a gene, 
but in females certain sites are inactive (for example through an epigenetic factor or a 
mutation) and in males others are inactive. 

Using a network-based approach we were able to identify potential sex- and disease-specific 
transcriptional regulators of these biological functions, the most striking of which was USF1. 
Although USF1 has previously been implicated both in the regulation of nuclear 
mitochondrial genes and in sexual-dimorphism, its specific role in COPD is largely unknown 
and our findings are an important step in beginning to understand its potential importance. 
Curiously, an increase or decrease in overall out-degree by transcription factors between 
male and female networks did not always directly correspond to differential-targeting of 
particular biological functions between male and female networks. For example USF1 had an 
overall higher out-degree in male networks (Figure 3E), yet it also had increased targeting of 
mitochondrial functions in female networks (Figures 6 and 7). This highlights the importance 
of interpreting network measures within a functional context. 

As with any computational analysis, there are limitations in our investigation that result from 
the underlying data we used; for example the number of genes included on the expression 
array may affect the comprehensiveness of the information incorporated in the model. One 
limitation in our specific application is that, although we found many sex-specific regulatory 
features, the sputum and blood expression data we used was only collected from individuals 
with COPD, and thus we lacked truly “normal” controls—this is a crucial direction for future 
research. However, by focusing on sex differences we observed just in the sputum networks 
and not the blood networks, we believe our findings are likely to represent sex-specific 
network alterations that are important for COPD. We also used a covariate-free model to 
evaluate differential-expression in order to be consistent with our subsequent regulatory 
network analysis, which does not directly model the role of covariates. It is therefore possible 
that in addition to the sex-specific regulatory changes we observe, there may also be gene 
expression differences between men and women with COPD that are simply not captured 
using a covariate-free approach. However, we suggest that is equally likely that similar 
outcomes in gene expression are mediated by distinct sets of transcriptional regulators. For 
example, it is reasonable to imagine that sex hormones (such as estrogen), which we only 
modeled in our network through receptor binding sites, might change the functions of some 
transcription factors (for example USF1) in other ways, requiring cells to respond and 
differentially rewire the effected portion of their regulatory network in order to maintain 
viability. In this case the overall expression profile of the cells might be similar, but the 
factors mediating that response could be vastly different. 

Genomic assays, such as gene expression data, provide a snapshot of the state of a cell and 
most widely used analysis approaches identify differences in individual genes by collectively 
comparing groups of samples. We believe one limitation of gene-centered approaches, 
especially in the context explored here, is due to the fact that individual genes do not define 
the biological processes that drive cell states, but that phenotypic alterations are better 
characterized by networks of interactions linking genes. In contrast, our network approach, 
although complementary to differential gene expression analysis, highlights fundamentally 
different aspects of sex-specific biology. Namely, that a gene, or a collection of genes 



involved in a biological function, may be similarly expressed in both men and women, but 
this expression may be regulated by different upstream factors. Understanding how the 
targeting of biological functions is distinct between sexes in COPD helped to elucidate 
potentially sexually-dimorphic mechanisms of the disease, an endeavor with relevance for 
both sex-specific diagnostics and therapeutics. Differential targeting of biological pathways is 
likely not limited to sex-specific disease features, and we believe the methods we employ 
here will be widely applicable to better understanding other biological systems and diseases. 

Methods 

Building ensembles of PANDA networks using a jack-knife 

We used PANDA [21] to integrate expression information with transcription factor motif and 
protein-interaction data. In our analysis we parsed the expression data by sex, employed a 
jack-knifing procedure and ran PANDA multiple times to construct sets of sex-specific, 
genome-wide transcriptional regulatory networks. The specifics of how we processed the 
input data and reconstructed the PANDA network models are included below: 

Expression data 

We obtained the CEL data files for 264 expression experiments performed on blood and 
sputum samples collected from 132 individuals and profiled using Affymetrix HGU 133 
plus2 microarrays. We RMA-normalized the expression data in R [26,83], and mapped 
probes to Entrez-gene IDs using a custom CDF [27]. These data include 18960 probes sets, 
mapping to 18895 unique genes (based on Hugo Gene Symbols). 15820 of these genes are 
also included in our motif scan (see below), including 651 on the sex chromosomes. After an 
initial PCA analysis investigating the clustering of samples based on the expression of genes 
on the Y chromosome, we excluded genes on the sex chromosomes and removed expression 
samples for 6 individuals who did not cluster correctly according to sex. We used expression 
data for the remaining 126 individuals (42 females and 84 males) and 15169 genes when 
constructing sex- and tissue-specific genome-wide regulatory networks. We also created a 
“random” version of the sputum expression data by permuting autosomal gene labels. 

Motif data 

We obtained position weight matrixes (PWM) for 130 core vertebrate transcription factor 
motifs from JASPAR [84,85]. To identify the target locations for each motif, each candidate 
sequence S was given a motif score equal to log [P(S|M)/P(S|B)], where P(S|M) is the 
probability of observing sequence S given motif M, and P(S|B) is the probability of observing 
sequence S given the genome background B. We modeled the distribution of these motif 
scores by randomly sampling the genome 106 times. Motif sites with a significance level of p 
< 10−5 and that fell within the promoter region ([−750, 250] base-pairs around the 
transcriptional start site) of one of the genes measured on our expression arrays were used to 
defined as an edge between a motif and that gene in our regulatory network prior. 

It is important to note that although when building our primary network models we did not 
include genes on the sex chromosome as potential targets, we did not remove motif 
information for sites bound by transcription factors encoded on the sex chromosomes (such 
as AR on chrX and SRY on chrY). We reasoned that since the motif sequences for these 



transcription factors still exist in the regulatory regions of autosomal genes they can still be 
indicative of information about a target gene’s local regulatory network structure. 

PPI data 

Interactions between human transcription factors were obtained from the supplemental 
material of [34]. We excluded interactions in this set when either transcription factor in the 
interaction did not directly match one of the motifs included in our regulatory network prior. 

Reconstructing PANDA networks 

To construct multiple sex- and tissue- specific network models, we selected ten subjects of 
the same sex at random, identified the sputum, blood and “random” expression data 
associated with these subjects, and used PANDA to, separately, integrate each of these three 
sample-sets of expression data with motif and protein-protein interaction data. We did 
multiple random selections of subjects of the same sex, constructing one hundred female-
specific and one hundred male-specific networks for each tissue. 

Identifying differentially-called edges between network ensembles 

PANDA reports the probability that an edge exists between a transcription factor (i) and gene 
(j) in an estimated network (n) as a Z-score (Zij

(n)). To select edges that are differentially-
called between male and female network ensembles, for each edge we calculated (1) its 
average edge-score across all networks in each of the two ensembles, (2) the difference 
between these average scores, and (3) used a t-test to evaluate the significance of the 
difference in edge-score distribution between the male and female network ensembles. We 
corrected this significance for multiple hypothesis testing. To select edges distinct between 
female and male network ensembles, we then selected edges that had an average edge score 
greater than zero in at least one of the ensembles, an absolute edge score difference of at least 
0.25, and an FDR significance less than 10−5. 

Clustering network differences 

In order to better appreciate large scale patterns in male/female sputum regulatory network 
differences, we performed a hierarchical clustering on a transcription factor by gene matrix 
populated with the t-statistic value of the corresponding network edge, calculated when 
comparing the distribution of predicted edge scores across the male versus female sputum 
network ensembles. Hierarchical clustering was done separately in each dimension using one 
minus the Pearson correlation as the distance metric and the “complete” linkage method. 

GSEA 

To run GSEA in a consistent manner on both gene expression and network regulatory data, 
we downloaded the java command line version of the program from 
www.broadinstitute.org/gsea/. We ran GSEA permuting gene set labels. Further, in order to 
ensure consistency between the GSEA analysis and the functional enrichment analysis we 
performed using Fisher’s exact test (shown in Figure 2H-J), we ran the GSEA program using 
custom Gene Matrix Transposed (GMT) files that we constructed from human GO 
annotations downloaded from geneontology.org (access date: 02/02/13). 



In analyzing the GSEA results, we consider the FDR p-values reported by GSEA. 
Specifically, we report enrichment in female categories based on the –log10(FDR) 
significance (resulting in positive values), and enrichment in male categories based on the + 
log10(FDR) significance (resulting in negative values). 
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