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Abstract

Background

There is growing evidence that many diseases deyv@imgress, and respond to ther

apy
fic

differently in men and women. This variability mayanifest as a result of sex-spec



structures in gene regulatory networks that infagehow those networks operate. Howeyer,
there are few methods to identify and charactadiferences in network structure, slowing
progress in understanding mechanisms driving seinarphism.

Results

Here we apply an integrative network inference me@thPANDA (Passing Attributes
betweenNetworks for Data Assimilation), to model sex-specific networks in ddoand
sputum samples from subjects with Chronic Obstvecfulmonary Disease (COPD). We
used a jack-knifing approach to build an ensemlildikely networks for each sex. By
adapting statistical methods to compare these mktewwsembles, we were able to identify
strong differential-targeting patterns associateih wunctionally-related sets of genegs,
including those involved in mitochondrial functiand energy metabolism. Network analysis
also identified several potential sex- and disessific transcriptional regulators of these
pathways.

Conclusions

Network analysis yielded insight into potential rfhacisms driving sexual dimorphism|in
COPD that were not evident from gene expressiotysisaalone. We believe our ensemple
approach to network analysis provides a principd&y to capture sex-specific regulatory
relationships and could be applied to identifyeli#nces in gene regulatory patterns in a wide
variety of diseases and contexts.
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Background

Chronic respiratory diseases, including Chronict@iotive Pulmonary Disease (COPD), are
among the most likely causes of death in the Urfittades; COPD ranks third only after heart
disease and all forms of cancer combined [1]. B plst COPD was thought to primarily
affect males, but in recent years the number offemwith COPD has greatly increased, and
currently more women die of COPD than men [2]. Sahéhe changing epidemiology is
likely due to an increase in female cigarette usend the 1960s. However, current research
also suggests biological causes for the apparentakdimorphism in the disease, with
women having a higher susceptibility [3-5], an @llemore severe COPD course even with
the same level of tobacco exposure [6], and areass in severe symptoms at a younger age
[2,7].

Investigating sex differences in disease is acalitarea of investigation [8,9] and a wide
number of diseases are known to effect men and waiifeerently [10]. It has been noted
that many sexually dimorphic features are likely ppmarily due to genetic variation [11].
On the other hand, network-modeling of transcrigemin model organisms has
demonstrated sexually dimorphic higher-order gateractions [12]. Consequently, systems-
based approaches have great potential for expleengdifferences in human traits [13,14].



In this study we leverage gene expression data snalojects with COPD to build sex-specific
networks and investigate whether alterations inegegulation might contribute to sexual-
dimorphism in COPD. The methods described her@airémited to analysis of lung disease
but are generalizable to other diseases that deratmsexually dimorphic characteristics.

Gene regulation involves the concerted activity ény distinct but non-independent
regulatory mechanisms [12,14]. While no single expental assay can fully capture the
complexity of a given biological system, each pdaa information concerning a particular
feature that influences, or results from, the stdite cell. Because of the complexity of gene
regulatory processes, there is increased intareabdeling approaches capable of integrating
multiple sources of regulatory information [15-18hd evidence suggests that these methods
perform much better than those using individuahdgpes in isolation [20].

Along these lines, we developed PANDRagsingAttributes betweerNetworks for Data
Assimilation) [21], a “message passing” network riefece method that integrates multiple
types of genomic data. PANDA models informationwfldhrough networks under the
assumption that both “transmitters” and “receiveyday active roles in modulating
regulatory processes. In PANDA’s model of gene laguy control, transcription factors are
the transmitters and the receivers are their taggaes. A set of initial connections linking
transcription factors to potential downstream ttgge inferred by mapping transcription
factor binding sites (TFBS) to the genome. Geneaeasgion profiles provide information on
shared activation states for elements in the nétvemrd protein-protein interaction data
provide information on co-regulatory processes. PANstarts with initial networks and then
uses the various data to iteratively update thevordt structures to more accurately fit the
available information, until the process converges consensus regulatory network.

In applying PANDA, we construct phenotype-specifiodels and then look for variation in
TF-target interactions (“edges”) to explore regogtdifferences. One surprising result of
applying PANDA in such a comparative analysis st tive are able to observe meaningful
changes in regulatory patterns even for genesatieatot differentially expressed [22].

The comparative analysis of phenotype-specific ndte/ enabled by PANDA makes it
particularly useful for studying sexual dimorphigmhealth and disease, where the absolute
levels of gene expression in disease may be similarale and female tissues but in which
different regulatory processes may be active [(t¢Juding differences in transcription factor
regulation in the presence of sex hormones [23,R4his is the case, identifying sexually
dimorphic network variability and associating thesstwork characteristics with specific
disease processes can lead not only to a bettarsiadding of the disease, but also to
therapies optimized for men and women.

In this study we begin by analyzing blood and sputgene expression data from subjects
with COPD. We then explore whether gene regulatatyvorks, estimated using these data,
contain sex-specific regulatory patterns. To de e use PANDA to model “ensembles” of
sex-specific regulatory networks in COPD and usesehnetwork ensembles to identify
differences in network topologies that are assediawith biological functions in a sex-
specific manner. As opposed to analyzing or cotitrgghe properties of single networks,
this ensemble approach to network analysis all@wvghie statistical quantification of network
features. In this application, we demonstrate hosné&sSet Enrichment Analysis (GSEA),
which was originally designed to quantify the assten of gene sets with differential
expression changes, can be used to estimate tbeiasm of gene sets with alterations in



network features in light of this ensemble appro&tbwever, more generally, our ensemble
approach to network modeling allows for the priteip investigation of differences in
network properties using statistical tools devetbfr genomic and other high-dimensional
data.

Results and discussion

Genes and gene sets are not strongly differentiallgxpressed between males
and females with COPD in either blood or sputum

We obtained and analyzed gene expression datauturapand blood samples from 132
subjects (44 females and 88 males) with COPD esdoih the ECLIPSE study [25].
Affymetrix CEL files were downloaded and normalizeding RMA [26], with probe-sets
mapped to Entrez-gene IDs using a custom CDF [Rd]initial quality control of this data
was performed by running a principal componentysisilon the expression values for the 24
probe-sets located on the Y chromosome. A plothef first versus the second principal
component (Additional file 1: Figure S1A) indicatédsat although most samples cluster
according to the sex ascribed in the phenotype, datae are six samples which do not
cluster as expected. To minimize potential noisee da poor quality data or sex
misclassification, we eliminated these six subjdoten further consideration, leaving 42
female and 84 male COPD subjects with both sputathldood gene expression data. A
principal component analysis plot for these renmgnsamples, generated using expression
information for genes located on the Y chromosommeshown in Figure 1A; age, COPD
Global Initiative for Chronic Obstructive Lung Dase (GOLD) stage based on spirometry
and pack-years of cigarette smoking for the coomrdmg subjects are shown in Figure 1B.
We compared the age, COPD GOLD stage and pack-géaigarette smoking between men
and women and observe significant differences ie agd pack-years but no significant
difference in disease stage. This is consistertt wievious observations that women often
get similarly severe COPD at a younger age and Veifs smoke exposure [2,6,7] and
highlights the importance of understanding the dga features mediating sexual
dimorphism in COPD. All subjects included in thisadysis are former smokers.

Figure 1 Comparison of males and females with COPD using aasmdard differential-
expression analysis approach. (AA\ PCA analysis on expression data using genesddca
on the Y chromosome. Males and females clusterntimbogroups(B) Covariate information
for the 42 female and 84 male subjects includateranalysis. The statistical difference
between sexes for age and pack-years was calcuisitegl an unpaired two-sample t-test and
the statistical difference between the sexes foLG&age was calculated by applying a chi-
squared test to a two by three (sex by stage)mgenicy table(C) The top most
differentially-expressed genes based on a usinghpaired two-tailed t-test (after

specifically excluding genes those on the sex clhgmmes). Genes with higher average
expression in female are colored pink and thosk igher average expression in male are
colored blue(D) The results of a GSEA analysis looking for GO gatg differential-
expression between males and females. The five diffestentially-expressed GO categories
in males and females in either sputum or bloodshoevn. Deeper shades of pink are used to
denote greater significance in female while despades of blue indicate greater
significance in males. The scale is based on tbhg FDR significance for categories
enriched in females, resulting in positive valuey] on the + log FDR significance for
categories enriched in males, resulting in negatalees. Note that the color-range extends



to an FDR significance of I9in each sex even though the most significant cates found

in this analysis only reach an FDR significancammfund 10°. (E) GSEA “enrichment plots”
for the two most significantly differentially-exmeed GO categories according to the GSEA
analysis in males and females in either sputumamdo

For the remaining 126 subjects, a genome-wide reiffiial expression analysis including the
sex chromosome genes serves as a strong positnteolcon the expression data as the
results identify many expected sex-related diffeesn(Additional files 1: Figure S2 and
Additional file 1: Tables S1-S2).We next excludeshgs on the sex chromosomes and tested
if autosomal genes were strongly differentially-egsed between males and females in
either the sputum or blood samples, using an uegdiwo-sample t-test. Using the sputum
samples, no genes are significantly differentiabypressed between males and females at an
FDR less than 0.1. Only eight autosomal genesedlish Figure 1C) are significantly
differentially-expressed in blood between femalel anale COPD subjects at an FDR
threshold of 0.1, suggesting that the removal afd@omosome genes largely mitigates the
sex-specific gene expression signal. Consequeilysequent analyses exclude genes on the
sex chromosomes.

Although very few autosomalgenes are significantly differentially-expressed when
comparing samples from males and females, it Ik @issible thatgroups of interacting
genes, representing particular biological functjonsight be collectively differentially-
expressed in a sex-specific manner. We evaluatsdptissibility by performing Gene Set
Enrichment Analysis (GSEA) [28]. We downloaded tlaga implementation of GSEA
(http://www.broadinstitute.org/gsea/) and tested tlee collective sex-specific differential
expression for sets of genes annotated to Gendd@gt¢GO) functional categories. GSEA
uses a gene-by-sample table of expression valuemBormation concerning sample features
(in this analysis, subject sex) to rank genes baseitheir differential expression. It then uses
this ranking to test if sets of genes (for examfese annotated to a particular GO term)
have consistent changes in expression patternsyrircase, consistently higher expression
levels in one sex compared to the other.

Figure 1D shows the five most differentially-exged functional gene sets (hereafter, simply
“functions” or “GO terms”) in males and females footh sputum (top panel) and blood
(bottom panel). Several of the corresponding GSE#ckement plots are presented in Figure
1E. Although the top functions are only marginalgnificant, both the blood and sputum
analysis includes several interesting results. daotiem, the most differentially-expressed
functions reach an FDR significance in the rang8.61 to 0.15 and include GO terms such
as “sterol biosynthetic process” and “steroid hyase activity”, which may play a role in
sexual dimorphism. The GO functions more highlyresped in COPD blood samples in
males compared to females include “cell killing"datphagocytosis”, processes potentially
related to COPD pathogenesis and severity [29,30].

Jack-knifing can be used to robustly estimate andampare regulatory
networks

We also used a two-sample f-test to evaluate ifvéineance of any of the autosomal genes’
expression levels was significantly difference kew females and males. We observe that in
sputum samples over 1000 genes are differenti@hable at an FDR less than 0.1. We
include these genes in Additional file 2. This olvaéon, together with the plausible
functional enrichment results, led us to next higpeize that the differentiagargeting of



biological functions may play a critical role inxsl dimorphism in COPD. Specifically, it is
possible that genes are differentiatiy-expressed, even if their overall average expression
levels are not significantly different. If this tfential co-expression is taken as evidence of
differential co-regulation, as is done in PANDAegthpotential transcription factors that are
differential-targeting these genes can be idewtif®dditional file 1: Figure S3).

It has been suggested that regulatory relationdhgb&een transcription factors and genes
likely have both stochastic and deterministic comgras, and thus may be better modeled by
probability distributions as opposed to simple Bawl relationships [31,32]. Furthermore, in
this application we recognized that differencessample size between males and females
could potentially influence predictions of regulatmetwork interactions. Motivated by this,
we used PANDA [21] to calculatensembles of networks based on jack-knifed sets of
samples drawn from our initial male and female sctpopulations (Figure 2A).

Figure 2 Using ensembles of networks to robustly identify sespecific interactions and
their associated genes. (A cartoon summary of how we use PANDA to buildeables

of networks using a jack-knifing approach to reskntipe original expression data multiple
types.(B-D) Volcano plots of the difference in mean edge weggioss two ensembles of
networks compared to the p-value of the differeandbe edge weight distributions in the two
ensembles. Comparisons incly@) female versus male sputum netwoi|K3) female versus
male blood networkgD) female versus male “random” networks. Edges ifiedtas
“different” in each comparison are shown as eihiek (female-specific) or blue (male-
specific).(E-G) Venn diagrams showing the overlap in genes tatigeyehe female-specific
(pink) or male-specific (blue) edges. Note thatagcan be targeted by both a male-specific
and a female-specific edge, but by different upstréranscription factors. There is a high
level of overlap in the genes targeted by the ifledtsex-specific edges in both the sputum
and blood networkgH-J) A hypergeometric probability was used to deterntimee
significance of overlap in male-specific genes vgémes annotated to GO categories, and
female-specific genes with genes annotated to G€yosdes. The top five categories
enriched in the males and females for each congraase shown.

Specially, As an input to PANDA, we constructechseription-factor target networks using
position-weight-matrices for 130 TFs recorded ia #faspar database [33], mapping these to
the promoter regions, defined as [-750,+250] basesparound the transcription start site.
We also include information regarding physical pnetprotein interactions between human
transcription factors [34]. To build ensembles eftworks, we used a “jack-knife” [35],
randomly selecting ten samples without replacenteoteate 400 gene expression data sets,
100 for each of four sample sets (blood-femalepdlmale, sputum-female, sputum-male).
We then used PANDA to infer networks for each egpi@n data set. As a negative control,
we also created a version of the sputum expresiata with a permutation of gene labels,
and built sex-specific ensembles of networks fag thndomized data.

This jack-knifing approach ensures that the predichetwork edges are not strongly
influenced by any one subject, as each networkirmreasembles represents an estimate of the
cellular regulatory network for a subset of theevaint samples. It also helps us regularize
differences in sample size between the sexes d&sagdbe reconstructed networks contains
information from the same number of subjects. Fartbur male and female ensembles each
include one hundred networks, giving us the powaguantify the statistical properties of the
estimated regulatory edges, something that woule theeen difficult or impossible had we
simply estimated a single network for each sex @sglie-type combination. Although the



jack-knifing approach does not allow us to directltyodel covariates (for example,
differences in COPD severity or smoking historigs)helps mitigate their effect on the
network predictions by modeling a distribution oétworks, which are, on average,
representative of the population, but whose vasgalikely represents the contribution of
other factors.

We used an un-paired two-sample t-test to quardifferences in the distributions of
predicted edge-weights between the sex-specifiworktensembles. We also averaged the
predicted edge weight across the networks in eademeble, excluded edges with low
average weights (<0) and, for the remaining edgetermined the difference in these average
edge weight values between the ensembles. Figur® ZBows volcano plots of the
difference in the average of each edge’s weighivéet the ensembles being compared,
versus the FDR significance in the difference ajesdeight distributions based on the t-test.
We immediately observe that edge differences if'ridmedom” volcano plot are not nearly as
strong as those in the sputum and blood volcants;phmwever, there are some differences,
including edges that are “significantly” differeatcording to the t-test. Consequently in this
following network edge analysis we use a more géimt FDR cutoff than we did with the
gene expression analysis.

We used a combination of the difference (absolatlaes>0.25), significance based on the t-
test (FDR <10°) and average edge weight (>0) to select diffeadigtcalled edges for each
ensemble comparison. Female- and male-specific sedge shown in pink and blue,
respectively, in Figures 2B-D. These criteria wetgsen such that each sex-specific
subnetwork contains edges that are both likelyetodal (based on a positive edge weight) as
well as different, both at an absolute and at tissitzal level. The cutoff values themselves
were selected such that each subnetwork contaitvgebe one and five percent of all
possible edges, which may be close to an expedw®dork density. We applied these same
cutoffs to the “random” volcano in order to quaytihe level of false positives in the
differential subnetwork edge calls. Although theme likely false-positive edges in our
identified subnetworks, for the selected cut-offeré are approximately 2.4 and 9.4 times
more differentially-called edges in the sputum #@hubd volcanos compared to the random
volcano, respectively. We note that this randonmoratontrol also illustrates that statistical
differences calculated by contrasting various netwwoperties should be viewed primarily
as a rank-ordering as opposed to a true signifedawel.

We determined the genes targeted by these sexfispadges and present the results as Venn
diagrams (Figure 2E-G). Many genes (5389 in spwinch8133 in blood) are targeted in both
male and female subnetworks, although the netwoddats indicate the regulation is
governed by different transcription factors. Thigyrpartially explain why we previously
observed only minimal differential gene expresgpatterns between the sexes; our network
results suggest that although genes may be signgapressed in both sexes, this is mediated
by a distinct set of transcriptional regulators.

To assess whether the genes targeted in only cngpseific subnetwork and not the other

might be associated with specific biological funos, we used Fisher’s exact test to evaluate
the enrichment of GO categories in these genesoasdrve some functional enrichment

(Figure 2H-J). The signal appears to be strongasthle genes uniquely targeted in a sex-
specific manner in the sputum-derived networks f@g2H); the sputum samples may be

biologically “closer” to the disease as a lung seusample and may represent cellular
process most likely to be associated with COPD.



Network ensembles uncover differential-targeting pderns in men and women
with COPD

We recognize that there are significant limitatidosstudying functional enrichment in a
context that relies upon somewhat arbitrary thrieishon order to define differential
subnetworks (Figure 2B-J). Firstly, this type opegach can be sensitive to the cutoffs used,
opening the opportunity for potentially biased Hssuwhen not used with caution.
Additionally, selecting genes based on whether they or are not targeted in a pair of
networks ignores anselative level of differential targeting. Specifically, wibserve a high
level of overlap in target genes when comparingenaadd female subnetworks (see Figure
2E-G); however, there are multiple instances whererze is targeted by many transcription
factors in one subnetwork but by a much smaller lmennor even a single TF in the other.
Although we excluded these commonly targeted gendse analysis shown in Figure 2E-J,
one could imagine they might play a significanerwi sex-specific differences in COPD.

Motivated to overcome these limitations, we nexdithe ensembles of networks generated
by PANDA in a manner analogous to how we used tkpression data to evaluate
differential-enrichment of GO functions between #exes. We previously observed that
some sets of functionally-related genes are wedikigrentially-expressed (Figure 1D); here
we wish to address a similar, but distinctly diéier question within the network context.
Namely, are sets of functionally-related geneseddhtiallytargeted? In other words, do a set
of functionally-related genes tend to have an iasee(or decrease) in regulatory targeting in
one sex-specific regulatory network context comgaoeanother?

In this analysis, instead of sets@fression samples associated with disease state and sex,
we have sets ofegulatory networks. Specifically, we have one hundred corresponding
representative networks for each set of expressamples, and therefore one hundred
predicted scores for each edge in those networgaré-3A shows a heat map of those scores
for the male and female sputum networks. Some etlgee consistently higher predicted
edge weights in the male networks while others hawesistently higher predicted edge
weights in the female networks. We would like tdate these differences in network
structure to differences in the regulation of bgpéal functions.

Figure 3 Visualization of edge weight and the in- and out-dgee of genes and TFs in
ensembles of sputum networks. (AlEdge weights for every possible transcriptiondatb
gene interaction, where each row represents an addesach column represents one of the
networks produced in the jack-knifing approach. Rane ordered based on the t-statistic
comparing the edge weight values and each rowsisaZe normalized for visualization
purposes onlyB) The in-degree, defined as the sum of all inconeitdge weights, for each
gene in the PANDA network reconstruction. Genews$oare ordered based on the t-statistic
comparing the gene in-degree distributions in W@ énsembles of networks (columns).
Again, rows are Z-score normalized only for visgpadion purposegC) The twenty-five

most differentially-targeted genes, identified asihg the most significant difference in in-
degree in the male compared to the female enseshbletworks. Both the significance of the
differential-targeting and the level of differemtexpression is showriD) The out-degree,
defined as the sum of all outgoing edges, for éatscription factor in the reconstructed
networks. Rows represent transcription factorsaedagain ordered based on the t-statistic
comparing the distribution of in-degree valueshaf transcription factor in the two
ensembles of network&) The ten most differentially-targeting transcripti@ctors, and



their level of differential-expression. The majgrdf the differentially-targeted genes and
differential-targeting transcription factors ard ddferentially-expressed.

To begin to address this question, within each of sex-specific PANDA predicted
networks, we assigned every gene a score based tin-degree”, which is defined as the
sum of the weights of all edges pointing to thategeFigure 3B shows the in-degree values
side-by-side for the male and female sputum netsvdike sorted genes in this figure based
on the statistical difference in the in-degree galbetween the two network ensembles, as
measured by an unpaired two-sample t-test. As thghedges, we observe that some genes
are consistently much more highly targeted in thalemnetworks, while others are
consistently much more highly targeted in the femaktworks. The twenty-five most
differentially-targeted genes, based on the t-testparison, are shown in Figure 3C. As a
control for this analysis we also reconstructed lomedred networks built after permuting the
sex-labels of the subjects (Additional file 1: Higus4A). We observe that the differential-
targeting observed for these genes is much grdearexpected by chance.

Our calculated in-degree values give an indicabbrhow heavily a gene is targeted in a
given network. Edge-weights predicted by PANDA espond to how likely a given
regulatory interaction is to exist and edges tlgdresent either activating or repressing
interactions can have similarly high weights. Copsmtly, genes with relatively higher
degrees are not necessarily “more activated,” thay in fact be repressed (if they are highly
targeted by more repressors than activators), ibhere(if they are equally targeted by both
activators and repressors). Therefore, a change gene’s degree between two sets of
networks is not necessarily related to either aneise or decrease in its expression level, but
instead suggests changes in its regulatory cor@mhsistent with this framework, even the
most strongly differentially-targeted genes do mppear to be strongly differentially-
expressed (Figure 3C). We therefore suggest tlesetlifferences in gene targeting likely
represent a sexually-dimorphic disease-related iniegvof the cellular network and that
understanding the biological implications of thes@ctural changes may provide insight into
the mechanisms driving disease morphology and keaduggestions for sex-specific
therapies.

We also calculated the “out-degree” of TFs in thestsvorks, or the sum of the weights of all
edges pointing from a TF, and show the resultsgnré 3D-E. As before, we observe strong
sex-specific differences in targeting patterns, netieough the TFs themselves are not
differentially-expressed. These results suggedt differences in regulatory patterns in the
absence of strong differential expression exisu@gothe regulating TFs as well as the
regulated genes. Thus the sex differences we cbsgear to be strongest at the level of the
network “edge” and not necessarily in the individurede” (gene and TF) states.

Biological functions are strongly associated withexually-dimorphic targeting
in COPD subijects

Our analysis suggests that although there is Hifference in gene expression levels between
males and females with COPD in either blood orwmputhere are likely different regulatory
mechanisms associated with and potentially medjatie disease state. If this is true, one
would expect that alterations in network structsteuld be concentrated around genes
representing particular functional classes reptesgnchanges in themechanisms of
activation, rather than downstream changes in gene expreSdhenefore, next we sought to
identify sexually dimorphidifferentially-targeted functions. We created “gene-by-network”



tables for each ensemble of networks, where theegahre the in-degrees of the genes (the
level of targeting identified by PANDA) in each olir predicted networks. We then ran
GSEA using these in-degree values instead of esijoreso evaluate if functionally-related
sets of genes gain or lose targeting.

Running GSEA on differential gene-degree leadsotoesstriking results (Figure 4A). First,
despite the lack of strong differentiadpression noted previously, directly comparing male
versus femal@etworks using this enrichment method reveals strong pattef differential-
targeting, with many functions that have significantly (FBR0.01) more targeting in the
female compared to the male networks (Figure 4Afential-targeting of these functional
categories is absent in networks reconstructed p&enuting the sex-labels (Additional file
1: Figure S4B). Furthermore, the results are higldgsistent when comparing female and
male networks built using either the sputum or dl@amples (although there is overall
greater enrichment for differential-targeting ofétions in the sputum). In contrast, repeating
the analysis using networks constructed from “ramtl@xpression data shows no strong
differential-targeting patterns.

Figure 4 Sexually-dimorphic targeting of biological functiors in Sputum and Blood
networks. (A) All GO categories significantly differentially-igeted (FDR < 0.01) using a
GSEA-type approach to compare gene targeting ie axadl female networks derived from
either sputum or blood expression data. Many foneti categories have genes that appear to
be much more highly targeted in the female netwodtapared to the male networks. There
is a high level of agreement between the diffeedtirgeted GO categories in both the
sputum and blood networks, but the enrichment gisars in the “random” networkd)

The ten most differentially-targeted pathways drettin the female and the male sputum
networks.

Closer inspection of the differentially-targetechétions shows many to be highly-related
based on their biological role and gene contemjuiei 4B shows the ten most differentially-
targeted functions in females and males in sput@ineloser inspection of the expression
levels of the genes annotated to these top furadticetegories shows that they appear to be
associated with disease stage (Additional file ipufe S5), supporting their relevance to
COPD. The pathways most significantly targeted iennare related to type | interferon,
which has previously been implicated in the sexiimlorphism in response to viral infections
(drivers of COPD exacerbations) [36,37] and in smitoune diseases [38]. They are also
consistent with previous observations that immunections are enriched in male COPD-
associated genes [39]. The pathways more highfjetad in women are all related in some
way to mitochondrial function, which has previoublgen implicated in the modulation and
development of lung disease [40,41]. Cigarette sngplkas also been shown to change
mitochondrial morphology [42] and abnormal mitoctnal function is described in patients
with COPD [43,44].

Because of its maternal inheritance [45,46], thieochiondria has long been associated with
sex-differences. Sex hormones play an importaetirotontrolling mitochondrial biogenesis
and activities [47-50]. In neuronal cells ER-betdoicalized in the mitochondria and mediates
mitochondrial vulnerability to oxidative damage [52]; it also impairs mitochondrial
oxidative metabolism in mesothelioma [53]. Inteirggly, estrogen receptors are reduced in
the mitochondria of epithelial cells from asthmatings [54]. In addition, multiple
peroxisome proliferator-activated receptors (PPARsElass of nuclear hormone receptor
proteins, have lower expression levels in COPDepédi This activity corresponds to lower



expression levels of the PPARe€o-activator PGC-d [55], a key regulator of energy
metabolism [56] and an inducer of mitochondria kiogsis [57]. Thus differential-targeting
of mitochondrial functions is consistent both wikmown biology concerning sexual-
dimorphism and COPD.

We have performed two analyses to confirm that stng differential-targeting of
biological functions we observe in these networksnot a consequence of our specific
approach. First, we repeated the ensemble netveadnstruction on the sputum expression
data, but modified our sampling technique to matobariates between each selected set of
ten female and ten male samples; the conclusiontisfcovariate-matched analysis are
nearly identical to what we observe with the randsampling (Additional file 1: Figure S6).
Secondly, we ran (1) one hundred GSEA differerdgigifession analyses, one for each set of
ten versus ten expression samples, and (2) onaddi®SEA differential-targeting analyses,
one for each female versus male network reconswlufrom these samples. Across these
analyses we again observe consistently strong reliftml-targeting of many biological
functions (Additional file 1: Figure S7).

Transcription factors mediate differential-targeting patterns in COPD

To gain a better appreciation for the network-lepekterns that might be driving the
identified functional alterations, we constructedeme-by-TF matrix of the t-statistic values
associated with the differences in edge weightdipted for the female compared to the male
sputum networks and performed a complete-linkageahthical clustering using a Pearson
correlation coefficient distance (Figure 5A). Tlesulting heatmap, where the rows are genes
and the columns are transcription factors, shoeargbatterns involving sets of transcription
factors differentially-targeting sets of genes e female and male networks. Given these
results, we next sought to identify if particulaartscription factors might be mediating the
differential-targeting of biological functions beten men and women.

Figure 5 Transcription-factor differential-targeting of biol ogical functions. (A)A
hierarchical clustering of the t-statistic assaaatvith differential edge weight between
ensembles of female and male sputum networks. g@iah in the matrix represents the t-
statistic of an individual edge extending fromanscription factor (column) to a gene (row)
(B-C) The statistical enrichment of GO categories inegetiifferentially-targeted by a
transcription factor between male and fem@esputum anqC) blood networks. All
categories significantly (FDR < 0.01) differentyathrgeted by at least one of the
transcription factors, in the given tissue-typeshewn. The columns (transcription factors)
are ordered identically to the hierarchical clusigin (A) and we observe a strong
correlation with the transcription-factor differelttargeting of GO categories (B).
Although there is some similarity in the transaoptfactor differential-targeting of these
functional sets of genes in the sputum and blodar&s, there is overall less enrichment in
the blood comparison.

For each jack-knife iteration PANDA calculates adge weight for every possible

transcription factor to gene interaction represgnthe likelihood that the TF regulates that
target gene. We used this information to desigrspécific gene-by-network tables. We ran
GSEA on these TF-specific tables to evaluate if famgtions are more strongly targeted by
an individual TF in one of our ensembles of netwockmpared to the other. The results of
the female versus male comparison in both sputuhb&od are shown in Figure 5B-C, with

the transcription factors shown in the same ordemmahe hierarchical clustering and each



row representing a biological function found todmiched (FDR < 0.01) when contrasting at
least one set of male or female TF-specific edyés.find more than 1000 GO functions

differentially-targeted between the sexes by astleme transcription factor in sputum, and
almost 900 in blood. As with the gene in-degredymimwe once again see much stronger
differential-targeting of functions in the sputuraetwork comparison relative to the blood

network comparison.

Disease-specific regulators of sexually-dimorphiaihctional targeting

In order to better interpret this information, veedised on our previously-identified ten most
differentially targeted functions (see Figure 4Bfi@resent the TF-specific GSEA results in
Figure 6A. We see overall consistency between thedband sputum sexually-dimorphic

targeting of these functions by individual trangtian factors. However, a handful of

transcription factors appear to have opposite patte the sputum and the blood networks.

Figure 6 Identifying disease-specific drivers of sexually-anorphic functional targeting.

(A) Sputum (top panel) and blood (bottom panel) trapson-factor specific enrichment for
differential-targeting of the top five GO functiomentified in either males or females in
Figure 4B.(B) A distribution of the similarity between differeaittargeting patterns of
transcription factors in sputum and blood netwaskmeasured using the Spearman
correlation. A red line indicates the cutoff useddentify transcription factors that have
opposite sex-specific regulatory patterns in sputompared to blood network€-G) Plots
comparing individual transcription factors’ sex-sifie differential-targeting of these GO
functions (five in female, filled shapes, and fimemale, hollow shapes) in the sputum versus
the blood networks.

One limitation of directly comparing data from mamnd women with COPD is that without

healthy controls it is unclear whether the systeamanges and high level of consistency we
observe in the blood and sputum network analysegwgortant for sex-related differences in
the disease or are a consequence of normal sexatiffes in cellular regulation. However,
we reasoned that the sputum networks should besécioto lung disease, and thus
transcription factors that are regulating biologitanctions in sputum but not in blood may

be the most important drivers of sex-speciind disease-specific functional regulation.

Therefore, to partially address our lack of healtloptrols, we next directly compared the
transcription-factor specific differential-targagiof functions in the sputum versus the blood
networks.

We quantified differences in transcription-factevel targeting of the ten functions in Figure
6A by calculating, for each transcription factohetSpearman correlation between the
significance levels in the sputum sex-specific rmetwcomparison and the significance levels
in the blood sex-specific network comparison. Atrilisition of these correlation values is

shown in Figure 6B.

Most transcription factors have a high positiverelation value, indicating that they are
increasing/decreasing their targeting of theseolgiokl functions between men and women
similarly in both sputum and blood networks. Sorhéhcs sexually-dimorphic targeting may

be related to COPD, however, it is also possibleesthis behavior was observed in both
sputum and blood samples, that it is a consequehnermal sex-differences. On the other
hand, there is a relatively smaller subset of wapson factors — those with negative

correlation coefficients — whose sexually-dimorptageting of these important functions is



opposite in the sputum and blood networks. We indicate 2Betranscription factors with
correlation less than —0.4 by arrows in Figure 6A.

The transcription factors most differentially-tatigg these key functions between sputum
and blood, based on our correlation measure, ieclie HAND1:: TCFE2A complex,
FOXF2, PAX4, the MYC::MAX complex, and SOX5 (Figeré&C-G). Both FOXF2 and
SOX5 have been implicated in COPD or lung biologd & is interesting that we observe
them in this sex-specific context. For example, FXhas been shown to quantitatively
increase binding upon smoke exposure in female [B8eand modulates the expression of
lung genes [59]. SOX5 is a candidate for COPD sut#méty and important for lung
development [60].

A network model for sex-specific targeting of fundabnally-related genes in
COPD

The GSEA analysis we have performed based on ffexatitial-targeting of genes is clearly

very powerful and has led to the identificationtbof potential biological functions targeted

in a sexually-dimorphic manner in COPD as well egesal transcriptional regulators that

may be mediating those differences. One strengtlthisf analysis is that it relies upon

characterizing network differences based on redativanges in targeting patterns. However,
in doing so it also ignores the actual strengthpdicted network interactions. In other

words, if a gene is more targeted in one ensenfuhetworks relative to the other, that gene
is highly implicated in the GSEA analysis, eventsf input edges have low absolute edge-
weight values predicted across all the network®ath ensembles. It is unlikely that the

systemic differential-targeting of functions we seeoss our panel of transcription factors in
Figure 6A actually corresponds to multiple stroegulatory interactions from every one of

them.

To better appreciate the relationship betweenyikegulatory interactions and the results of
our functional analysis, we next visualized submeks based on the female-specific and
male-specific edges we previously identified (Fegir2B-C). In order to interpret our
functional results in this regulatory network codteve identified sex-specific edges that
extend between the 23 disease-specific transanigdotors and genes annotated to the top
differentially-targeted functions. We illustrateethesulting subnetworks in Figure 7. Edges
and genes are colored pink or blue based on whétlegr were identified as part of the
female or male networks or functions, respectively.

Figure 7 lllustrations of core subnetworks of sex-specificegulation in COPD. (A) The
sputum subnetwork, defined by sputum sex-speaifges (as shown in Figure 2B) that
extend between the identified disease-specificetisi{Figure 6B) and genes annotated to one
of the top five differentially-targeted GO categsriin ensembles of networks built based on
sputum expression data (Figures 4B andB).The blood subnetwork, defined by blood sex-
specific edges (Figure 2C) that extend betweendiified disease-specific drivers (Figure
6B) and genes annotated to top five GO categaiestified as differentially-targeted

between male and female networks (Figures 4B anBdg)es and genes are colored pink or
blue based on whether they were identified asqgfarte female or male networks or
functions, respectively.

We observe that some transcription factors, sucBREB1 and ZFX target distinct sets of
genes in both the male and female sputum netwdfKX.is the X-linked version of a protein



that plays a role in molecular sex determinatioh],[&0 it may not be surprising that we
found sex-specific differences in its regulatoryt@ans. However, it has also been implicated
in lung cancer [62,63]. Similarly CREB is over-egpsed in many cancers, including lung
cancer [64], and, interestingly, has been showmteract with the estrogen receptor and to
have age and sex- dependent expression pattetims lnuman brain [65].

Several transcription factors dominate in one sexpared to the other. For example, the
MYC::MAX complex appears to primarily target gerssotated to functions enriched in the
female-specific sputum network (but not in the lblo@twork) while SOX5 targets genes in
the male-specific sputum network. USF1, in pardcubppears to be a “hub” transcription
factor for the female functionally related-genesha sputum networks.

USF1 both regulates and interacts directly witmoggn receptor (ER) in a protein complex
[66], which may explain its female-specific actwiEstrogen has also been shown to induce
USF1 to bind to the regulatory regions of seveeias [67-69]. USF1 is involved in the
cross-talk between hypoxia-related elements suchrgshydrocarbon receptor (AHR) and
the estrogen receptor, inhibiting the former [7Q-7his relationship may be important in
sex-specific COPD biology as AHR has previouslyrogkentified as potentially important
for sex-specific differences in lung cancer [73].

Sex-specific effects of USF1 have been noted pusWo[74,75]. Consistent with our
findings, it has been reported that in mouse liveale gene signatures are enriched for
functions such as immune response while femaleasiges are enriched in functions such as
oxidoreductase activity and mitochondrion [75]. Blof USF1 in HepG2 cells also indicates
that it regulates nuclear mitochondrial genes [R8st interestingly, however, is that fact
that USF1 has been shown to bind to the promotérnaediate the expression of PG&-1
[77,78] which, as we previously noted, is an impottregulator of mitochondrial biogenesis
[57], and, along with several PPARSs, has been shiovwe expressed at lower levels in the
skeletal muscle of COPD patients [55]. Therefoteisinot unreasonable to suppose that
USF1, as indicated by our PANDA network analysigynbe an important mediator of
mitochondrial-activity in a sexually-dimorphic maerin patients with COPD.

Conclusions

In this study we identified functionally relatedis®f genes that are strongly differentially-
targeted between men and women with COPD. Ourtsesugigest that sexual dimorphism in
features of COPD may be a consequence of the megwvof cellular networks around
particular biological pathways, especially thoseoimed in mitochondrial function and
energy metabolism, leading to differences in CORDmien and women. Although these
functions have previously been implicated in CORtile is known about their disease- and
sex-specific regulation. In addition, despite thetfthat there is a large body of research
concerning the structural features iotlividual regulatory networks [79-82], quantifying
differences in network features is relatively understudied ahdre are few systematic
approaches for characterizing variability in geaegéting. In our analysis we contrasted
networks and identified functionally related sefsgenes that are strongljifferentially-
targeted between men and women with COPD.

One of our most striking findings was clear diffetial-targeting patterns in the absence of
similarly compelling differential-expression. Seakpotential biological mechanisms may



play a role in mediating this differential targefinOne possibility is that multiple
transcription factors compete for the same bindiibg upstream of a given target gene, but
which one primarily regulates that gene is dependarthe cellular context (for example a
change in protein abundance or conformation in aesp to sex hormones). Another
possibility is that several transcription factoevé potential binding sites upstream of a gene,
but in females certain sites are inactive (for eplmthrough an epigenetic factor or a
mutation) and in males others are inactive.

Using a network-based approach we were able tdifggrotential sex- and disease-specific
transcriptional regulators of these biological fimags, the most striking of which was USF1.
Although USF1 has previously been implicated both the regulation of nuclear
mitochondrial genes and in sexual-dimorphism, pisceic role in COPD is largely unknown
and our findings are an important step in beginrmginderstand its potential importance.
Curiously, an increase or decreaseougrall out-degree by transcription factors between
male and female networks did not always directlyregpond to differential-targeting of
particular biologicafunctions between male and female networks. For example W@Hlan
overall higher out-degree in male networks (FigBiE, yet it also had increased targeting of
mitochondrial functions in female networks (Figu6eand 7). This highlights the importance
of interpreting network measures within a functiozantext.

As with any computational analysis, there are ktngins in our investigation that result from
the underlying data we used; for example the nunobeyenes included on the expression
array may affect the comprehensiveness of the nmdition incorporated in the model. One
limitation in our specific application is that, ladtugh we found many sex-specific regulatory
features, the sputum and blood expression datasee was only collected from individuals
with COPD, and thus we lacked truly “normal” congre-this is a crucial direction for future
research. However, by focusing on sex differencelserved just in the sputum networks
and not the blood networks, we believe our findimgs likely to represent sex-specific
network alterations that are important for COPD. ®Weso used a covariate-free model to
evaluate differential-expression in order to be sistent with our subsequent regulatory
network analysis, which does not directly modelrble of covariates. It is therefore possible
that in addition to the sex-specific regulatory s we observe, there may also be gene
expression differences between men and women WAQRLL that are simply not captured
using a covariate-free approach. However, we sugipd is equally likely that similar
outcomes in gene expression are mediated by disteis of transcriptional regulators. For
example, it is reasonable to imagine that sex hogadsuch as estrogen), which we only
modeled in our network through receptor bindingssitmight change the functions of some
transcription factors (for example USF1) in otheayw, requiring cells to respond and
differentially rewire the effected portion of theiegulatory network in order to maintain
viability. In this case the overall expression geobf the cells might be similar, but the
factors mediating that response could be vasthemdint.

Genomic assays, such as gene expression datagd@r@snapshot of the state of a cell and
most widely used analysis approaches identify diffees inndividual genes by collectively
comparing groups of samples. We believe one limitaiof gene-centered approaches,
especially in the context explored here, is duth&fact that individual genes do not define
the biological processes that drive cell stated, that phenotypic alterations are better
characterized by networks of interactions linkirengs. In contrast, ounetwork approach,
although complementary to differential gene expogssnalysis, highlights fundamentally
different aspects of sex-specific biology. Namdlyat a gene, or a collection of genes



involved in a biological function, may be similarypressed in both men and women, but
this expression may be regulated by different @pstr factors. Understanding how the
targeting of biological functions is distinct between sexasCOPD helped to elucidate
potentially sexually-dimorphic mechanisms of theedise, an endeavor with relevance for
both sex-specific diagnostics and therapeuticdefhtial targeting of biological pathways is
likely not limited to sex-specific disease featyrasd we believe the methods we employ
here will be widely applicable to better understagdther biological systems and diseases.

Methods

Building ensembles of PANDA networks using a jack-kife

We used PANDA [21] to integrate expression inforigratith transcription factor motif and
protein-interaction data. In our analysis we pargex expression data by sex, employed a
jack-knifing procedure and ran PANDA multiple tim&s construct sets of sex-specific,
genome-wide transcriptional regulatory networkse ®pecifics of how we processed the
input data and reconstructed the PANDA network neodee included below:

Expression data

We obtained the CEL data files for 264 expressipeaments performed on blood and
sputum samples collected from 132 individuals anofiled using Affymetrix HGU 133
plus2 microarrays. We RMA-normalized the expressiata in R [26,83], and mapped
probes to Entrez-gene IDs using a custom CDF [Bfigse data include 18960 probes sets,
mapping to 18895 unique genes (based on Hugo Ggmédls). 15820 of these genes are
also included in our motif scan (see below), inglgds51 on the sex chromosomes. After an
initial PCA analysis investigating the clusterinigsamples based on the expression of genes
on the Y chromosome, we excluded genes on thetlsexnosomes and removed expression
samples for 6 individuals who did not cluster cotigeaccording to sex. We used expression
data for the remaining 126 individuals (42 femadesl 84 males) and 15169 genes when
constructing sex- and tissue-specific genome-wefpilatory networks. We also created a
“random” version of the sputum expression datadxyynuting autosomal gene labels.

Motif data

We obtained position weight matrixes (PWM) for 18@re vertebrate transcription factor
motifs from JASPAR [84,85]. To identify the tardetations for each motif, each candidate
sequence S was given a motif score equal to l10§|M(P(S|B)], where P(S|M) is the
probability of observing sequence S given motifavid P(S|B) is the probability of observing
sequence S given the genome background B. We nibdlededistribution of these motif
scores by randomly sampling the genom&tites. Motif sites with a significance level of p

< 10° and that fell within the promoter region ([-75050% base-pairs around the
transcriptional start site) of one of the genessussd on our expression arrays were used to
defined as an edge between a motif and that gemeriregulatory network prior.

It is important to note that although when buildimgr primary network models we did not
include genes on the sex chromosome as potentigetsa we didnot remove motif
information for sites bound by transcription fast@ncoded on the sex chromosomes (such
as AR on chrX and SRY on chrY). We reasoned thatesthe motif sequences for these



transcription factors still exist in the regulataggions of autosomal genes they can still be
indicative of information about a target gene’salo@gulatory network structure.

PPI data

Interactions between human transcription factorsewebtained from the supplemental
material of [34]. We excluded interactions in teet when either transcription factor in the
interaction did not directly match one of the n®iricluded in our regulatory network prior.

Reconstructing PANDA networks

To construct multiple sex- and tissue- specifiovoek models, we selected ten subjects of
the same sex at random, identified the sputum, dbland “random” expression data
associated with these subjects, and used PANDASefmarately, integrate each of these three
sample-sets of expression data with motif and prgieotein interaction data. We did
multiple random selections of subjects of the sa@we constructing one hundred female-
specific and one hundred male-specific networks#mh tissue.

Identifying differentially-called edges between netork ensembles

PANDA reports the probability that an edge exigsaeen a transcription factor (i) and gene
() in an estimated network (n) as a Z-scode(”b. To select edges that are differentially-
called between male and female network ensembbesedch edge we calculated (1) its
average edge-score across all networks in eaclheotwo ensembles, (2) the difference
between these average scores, and (3) used a tbtestaluate the significance of the
difference in edge-score distribution between trenand female network ensembles. We
corrected this significance for multiple hypothetasting. To select edges distinct between
female and male network ensembles, we then seledges that had an average edge score
greater than zero in at least one of the ensemdntesbsolute edge score difference of at least
0.25, and an FDR significance less thar10

Clustering network differences

In order to better appreciate large scale pattermeale/female sputum regulatory network
differences, we performed a hierarchical clusteonga transcription factor by gene matrix
populated with the t-statistic value of the corsging network edge, calculated when
comparing the distribution of predicted edge sc@e®ss the male versus female sputum
network ensembles. Hierarchical clustering was dsaparately in each dimension using one
minus the Pearson correlation as the distance eratid the “complete” linkage method.

GSEA

To run GSEA in a consistent manner on both geneessmpn and network regulatory data,
we downloaded the java command Iline version of th@ogram from
www.broadinstitute.org/gsea/. We ran GSEA permuting gene set labels. Furtimeorder to
ensure consistency between the GSEA analysis andutittional enrichment analysis we
performed using Fisher’s exact test (shown in Fdg2i-J), we ran the GSEA program using
custom Gene Matrix Transposed (GMT) files that wenstructed from human GO
annotations downloaded from geneontology.org (a&cdate: 02/02/13).



In analyzing the GSEA results, we consider the FpRalues reported by GSEA.
Specifically, we report enrichment in female catggo based on the -lggFDR)
significance (resulting in positive values), andi@mment in male categories based on the +
logio(FDR) significance (resulting in negative values).
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Addtional files provided with this submission:

Additional file 1. Supplemental text and figures. This file includes PCA plots, the results of a gene expression and network-
based analysis performed without removing sex chromosome genes and the results of several additional network analyses
that complement those described in the main text (1204k)
http://www.biomedcentral.com/content/supplementary/s12918-014-0118-y-s 1.pdf

Additional file 2. List of genes that have significantly different variance in their sputum expression profiles when comparing
females and males (48k)

http//www.biomedcentral.com/content/supplementary/s 12918-014-0118-y-s2.txt
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