2

MCB Accepted Manuscript Posted Online 13 July 2015 Mol. Cell. Biol. doi:10.1128/MCB.00060-15 Copyright © 2015, American Society for Microbiology. All Rights Reserved.

> Tiancen Hu,^{a,b} Jennifer E. Yeh,^{c,d} Luca Pinello,^{f,g} Jaison Jacob,^a Srinivas Chakravarthy,^e Guo-3 Cheng Yuan, ^{f,g} Rajiv Chopra, ^a# David A. Frank, ^{c-h}# 4 5 T.H. and J.E.Y. contributed equally to this work. 6 7 Center for Proteomic Chemistry^a and Postdoctoral Program,^b Novartis Institutes for BioMedical 8 Research, Cambridge, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, 9 Boston, MA^c; Biophysical Collaborative Access Team) / Illinois Institute of Technology, Sector 10 18ID (Advanced Photon Source, Argonne National Laboratory), IL^e; Departments of Medicine, 11 Harvard Medical School^d and Brigham and Women's Hospital,^h Boston, MA; Department of 12 Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA^f; 13 14 Department of Biostatistics, Harvard School of Public Health, Boston, MA^g 15 Running Head: Structure and function of STAT3 N-terminal domain 16

Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity

17 #Address correspondence to Rajiv Chopra, rajiv.chopra@novartis.com, and David A. Frank,

- 18 david_frank@dfci.harvard.edu.
- 19
- 20
- 21
- 22 Word count for Materials and Methods: 2201
- 23 Combined word count for Introduction, Results, and Discussion: 5056

25	The transcription factor STAT3 is constitutively active in many cancers, where it
26	mediates important biological effects including cell proliferation, differentiation, survival, and
27	angiogenesis. The N-terminal domain (NTD) of STAT3 performs multiple functions such as
28	cooperative DNA binding, nuclear translocation and protein-protein-interactions. However, it is
29	unclear which subsets of STAT3 target genes depend on the NTD for transcriptional regulation.
30	To identify such genes, we compared gene expression in STAT3-null mouse embryonic
31	fibroblasts (MEFs) stably expressing wild-type or NTD-deleted STAT3. NTD deletion reduced
32	cytokine-induced expression of specific STAT3 target genes by decreasing STAT3 binding to
33	their regulatory regions. To better understand potential mechanisms of this effect, we
34	determined the crystal structure of the STAT3 NTD and identified a dimer interface responsible
35	for cooperative DNA binding <i>in vitro</i> . We also observed a Ni ²⁺ -mediated oligomer with as yet
36	unknown biological function. Mutations on both dimer and Ni ²⁺ -mediated interfaces affected
37	cytokine induction of STAT3 target genes. These studies shed light on the role of the NTD in the
38	transcriptional regulation by STAT3 and provide a structural template to design STAT3 NTD
39	inhibitors with potential therapeutic value.

Accepted Manuscript Posted Online

40 Introduction

Signal transducer and activator of transcription (STAT) proteins are a family of latent 41 transcription factors activated by cytokines and growth factors (1). Mammals contain seven 42 STAT proteins, each highly conserved across species. Of these, STAT3 is a multi-functional 43 member involved in acute-phase response, development, cell growth and differentiation, 44 45 immunity, hematopoiesis, and tumor survival. Upon stimulation by cytokines such as 46 interleukin-6 (IL-6), STAT3 is phosphorylated by Janus-family kinases (JAKs) at Tyr705, dimerizes and translocates into the nucleus to regulate gene expression. While normal cells 47 display transient physiologic STAT3 activation due to tight regulation by inhibitory molecules 48 (1), many cancer cells depend on constitutive activation of STAT3 for survival; and ectopic 49 expression of STAT3 is sufficient for cell transformation (2-5). Given its necessity and 50 sufficiency for tumorigenesis, STAT3 represents a promising target for cancer therapy (6, 7). 51 52 STAT3 is composed of an N-terminal domain (NTD) and a "core domain" comprising a 53 coiled-coil domain for protein-protein interactions (PPI), a DNA-binding domain, a linker region, an SH2 domain for dimerization, and a C-terminal domain for transactivation. Structures 54 of the "core domain" have already been determined (8-10). However, the structure of the NTD 55 is yet unknown. Its function can be summarized into three main categories (Supplemental 56 Table ST1). First, the NTD mediates tetramerization of two Y705-phosphorylated STAT3 (P-57 58 STAT3) dimers to cooperatively bind closely-spaced STAT3 sites in gene promoters (11-13). This cooperativity is critical for STAT3 to recognize weaker binding sites, potentially 59 60 broadening the pool of its target genes. However, the full complement of target genes dependent on STAT3 NTD has not been determined. Second, the NTD mediates dimerization of 61 62 unphosphorylated STAT3 (U-STAT3) and is essential for its nuclear accumulation (14-16),

63	DNA binding (17), chromatin remodeling (17-19), and regulation of gene expression (18). A
64	point mutation in the NTD (L78R) that disrupts U-STAT3 dimerization has been identified in
65	inflammatory hepatocellular adenoma (IHCA) (20, 21). The NTD is also necessary for U-
66	STAT3 to suppress pro-apoptotic genes, which drives the proliferation and survival of breast
67	cancer cells (22). Finally, STAT3 NTD binds other proteins to form functional complexes in
68	transcriptional regulation and anti-viral response. Many of these interactions require post-
69	translational modifications of the STAT3 NTD (23-29). Besides these three main functions,
70	other properties of STAT3 might also involve the NTD. These include the oligomerization of U-
71	STAT3 in the cytosol (30), direct regulation of STAT3 by metal ions (31-33), and non-genomic
72	functions of STAT3 in microtubule stabilization (34) and mitochondrial metabolism (35).
73	Despite the extensive studies of STAT3 NTD functions, a systematic understanding of
74	the genes regulated by the STAT3 NTD is lacking, and the atomic structure of the STAT3 NTD
75	remains unknown. In this study, we identified genes regulated by the STAT3 NTD by
76	comparing gene induction in STAT3-null mouse embryonic fibroblasts (MEFs) stably expressing
77	wild-type or NTD mutant STAT3. We also determined the crystal structure of the STAT3 NTD
78	to elucidate functional interfaces. This study provides novel insight into transcriptional
79	regulation by STAT3 and structural hints to design STAT3 NTD inhibitors.
80	
81	Materials and Methods
82	Generation of stable cell lines

Wild-type mouse embryonic fibroblasts (MEFs) and STAT3-null MEFs (received from
Valeria Poli, University of Turin, Italy) (36, 37) were maintained in Dulbecco's modified Eagle
medium (DMEM) containing 10% fetal bovine serum. STAT3-null MEFs were stably

87 and selected for 2 weeks in 500 µg/mL G418 (Life Technologies, Grand Island, NY). Individual clones were picked with 5 mm cloning disks (Bel-Art, Wayne, NJ). All cells were maintained in 88 a humidified incubator at 37 °C with 5% CO₂. 89 90 Cytokine stimulation 91 MEFs were stimulated with leukemia inhibitory factor (EMD Millipore Corporation, 92 Billerica, MA), 10 ng/mL unless otherwise indicated, for 15 min for protein analyses, 30 min for 93 mRNA analyses, and 15 min for chromatin immunoprecipitation (ChIP) analyses. 94 95 RNA isolation for RNA-Seq analysis 96 Total RNA was isolated from 5×10^5 cells using TRIzol (Invitrogen) reagent as per the 97 98 manufacturer's instructions. Quality, quantity, and integrity of total RNA were evaluated using a 99 NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). Library preparation (ribosomal depletion-100 101 RNASeq method) and sequencing were performed by the Dana-Farber Cancer Institute Center for Computational Biology. The cDNA library of good quality was PCR amplified and 102 103 sequenced on an Illumina HiSeq 2000 System with a paired-end, 50-cycle flow cell. 104 RNA-Seq data analysis 105 106 Quality of reads was checked using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Available reads were aligned to 107

transfected with pCMV6-hSTAT3a using Lipofectamine 2000 (Invitrogen, Grand Island, NY)

the UCSC Mus musculus reference genome (mm9) using Tophat 2 (http://tophat.cbcb.umd.edu/) 108

Molecular and Cellular

110	(http://cufWTinks.cbcb.umd.edu/). All alignment statistics are reported in Supplemental Table
111	ST2.
112	Htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) was used to count
113	the number of reads for each transcript followed by analysis using the Bioconductor package
114	edgeR (http://www.bioconductor.org/packages/release/bioc/html/edgeR.html). This package,
115	with default parameters, was used to filter out genes expressed at low levels, with a CPM (count
116	per million) < 3 and to remove batch effects. Differentially expressed genes were calculated
117	using the following groups:
118	• STAT3-null MEFs + WT unstimulated vs. STAT3-null MEFs + WT LIF-stimulated
119	• STAT3-null MEFs + WT, Trp^{37} Phe, or ΔNTD unstimulated vs. STAT3-null MEFs +
120	WT, Trp ³⁷ Phe, or Δ NTD LIF-stimulated.
121	
122	STAT3 binding site analysis
123	All available murine STAT3 ChIP-seq datasets were downloaded from the Gene
124	Expression Omnibus (GEO): GSM288353, GSM494687, GSM494690, GSM494691,
125	GSM494694, GSM580756, GSM686673. Each gene was checked for the presence of STAT3
126	peaks in a window of 5 kb centered at the transcription start site using Cistrome Finder
127	(http://cistrome.org/finder/). Each gene was also checked for the presence of a STAT3 motif
128	(MA0144.1) from JASPAR MOTIF database (<u>http://jaspar.genereg.net/</u>) in a window of 5 kb
129	centered at the transcription start site using FIMO (38) software

and gene expression levels in FPKM quantified using Cufflinks 2

- (http://meme.nbcr.net/meme/fimo-intro.html) with default parameters and p-value of 1×10^{-4} . 130
- 6

Molecular and Cellular Biology

131 132 133

RT-PCR 134 Total RNA was extracted using RNeasy Mini kits (Qiagen, Valencia, CA) and reverse 135 136 transcribed with TaqMan kits (Applied Biosystems, Foster City, CA). Quantitative PCR (qPCR)

binding sites in eukaryotes presented as position-specific scoring matrices.

JASPAR contains transcription factor binding profiles derived from experimentally defined

137 was performed in triplicate using SYBR select master mix (Applied Biosystems) on a 7300 or

138 7500 real-time PCR system (Applied Biosystems) with 40 cycles of: 95 °C for 30 sec, 55 °C for

139 30 sec, and 72 °C for 30 sec. Specificity of amplification was confirmed by melt curve analysis.

Cycle threshold (C_T) values for target isoforms were normalized to an endogenous reference 140

141 gene (HPRT). Primer sequences given in Supplemental Table ST4 were designed from UCSC

142 genome browser reference transcript sequences using Primer3 software.

143

144

145 *Chromatin immunoprecipitation*

ChIP was performed as previously described (39). Briefly, cells (1×10^7) were fixed in 146 1% formaldehyde for 10 min, sonicated using a Fisher Scientific Sonic Dismembranator Model 147 148 500 PDQ on setting 15 in 15 sec pulses, and lysates immunoprecipitated overnight at 4 °C with 149 an antibody for STAT3 (sc-482) from Santa Cruz Biotechnology, Inc. (Dallas, TX). Quantitative 150 PCR was performed using primers listed in **Supplemental Table ST4**. Results were expressed 151 as % of input.

152

153

154 *Immunoblot analyses*

155	Cells were lysed on ice for 15 minutes in EBC lysis buffer [50 mM Tris (pH 8.0), 250
156	mM NaCl, 0.5% NP40] supplemented with phosphatase and complete protease inhibitors
157	(Roche, Indianapolis, IN). Blots were probed with antibodies to STAT3 (sc-482) from Santa
158	Cruz Biotechnology; phospho-STAT3 (Y705) (9131) from Cell Signaling Technology, Inc.
159	(Danvers, MA); and tubulin (T5168) and actin (A5316) from Sigma-Aldrich Corp. (St. Louis,
160	MO). Nuclear and cytoplasmic fractionations were performed according to the manufacturer's
161	instructions (Active Motif, Carlsbad, CA).
162	
163	Protein production
164	Various constructs including different truncations and solubilization tags of human
165	STAT3 NTD (which has the same sequence as mouse) were tested for optimal expression and
166	purification. We found that deleting the first two residues of STAT3 NTD (Met1 and Ala2)
167	dramatically improved the soluble expression of the protein. Thus we cloned residues 3-120, 3-

168 124, 3-126, 3-130, 3-135, and 3-138 into a custom vector derived from pET-series vectors (EMD

169 Millipore) for recombinant expression in *E. coli*. Each insert was preceded by a 6xHis tag

170 followed by a recognition site ("LEVLFQGP") of PreScission protease (GE Healthcare). The

171 plasmids were transformed into BL21 (DE3) (Life Technologies). Single colonies were

inoculated into 10 mL of Terrific Broth (TB) medium (Teknova) supplemented with 30 mg/L

173 kanamycin and grown at 37°C overnight. The next day the overnight culture was amplified into

174 1 L of TB medium with 30 mg/ml kanamycin. The culture was grown at 37 °C for 3-4 hr until

- 175 OD A600 reached 2.0, induced with isopropyl-beta-D-thiogalactoside (IPTG) to 0.4 mM to
- 176 induce expression, and grown at 16 °C overnight. The cells were harvested by centrifugation at

178	500 mM NaCl, 1 mM TECP, 10% glycerol) supplemented with complete protease inhibitors
179	(Roche, Indianapolis, IN) and 0.1 mg/mL deoxyribonuclease I from bovine pancreas (Sigma) per
180	50 mL of lysis buffer, then lysed by passing through a Microfluidizer (Microfluidics) two times.
181	The lysate was cleared by centrifugation at 25,000 g for 1 hr. Talon resin (Clontech) was then
182	added to the supernatant for batch binding overnight at 4 °C. The next day the resin was packed
183	into a column, washed with binding buffer plus 20 mM imidazole, and eluted with binding buffer
184	plus 300 mM imidazole. The eluted protein was supplemented with PreScission protease (100
185	μ g per 10 mg of target protein) and dialyzed in binding buffer at 4 °C overnight. The mixture
186	was concentrated using Amicon Ultra (EMD Millipore) and loaded onto a HiLoad 16/60
187	Superdex 200 (GE Healthcare) size-exclusion column equilibrated in 20 mM Tris·HCl (pH 7.5),
188	150 mM NaCl, and 1 mM dithiothreitol (DTT). Peak fractions were analyzed by SDS-PAGE,
189	pooled, and concentrated for crystallization.
190	Wild-type STAT3 (mouse β isoform, residues 1-722, UniProt number P42227) was
191	cloned into pET-SUMO vector (Life Technologies) with a PreScission recognition site inserted
192	between the 6xHis-SUMO tag and STAT3. The plasmid was transformed into TKB1 (DE3)
193	(Agilent) or BL21 (DE3) to produce Y705-phosphorylated or non-phosphorylated STAT3,
194	respectively. Protein expression, affinity chromatography, and tag cleavage were the same as in
195	the production of STAT3 NTD. After tag cleavage, the mixture was bound back to 1 mL
196	HisTrap HP column (GE Healthcare) and eluted with an imidazole gradient ($0 - 300$ mM). Pure
197	full-length STAT3 (OD A260/A280 ratio ~ 0.55) was eluted at about 20 mM imidazole. The
198	protein was then concentrated and loaded onto a HiLoad 16/60 Superdex 200 size-exclusion
199	column equilibrated in 20 mM Tris·HCl (pH 8.0), 500 mM NaCl, 5% glycerol, and 1 mM DTT.

5,000 g for 20 min. The pellet was resuspended in binding buffer (50 mM Tris·HCl (pH 8.0),

MCB

Molecular and Cellular

201 length STAT3 was produced in the same way as wild-type STAT3. The STAT3 core domain 202 (residues 127-722 of mouse STAT3 β isoform) was also produced in the same way, except that 203 the protein mixture after tag cleavage was loaded onto a HiTrap O HP column (GE Healthcare) 204 instead of the HisTrap column, and eluted with 20 mM – 1M NaCl gradient in 50 mM Tris HCl 205 pH 8.0, 10% glycerol and 1 mM TCEP. Size exclusion coupled with multi-angle static light scattering (SEC-MALS) of non-phosphorylated full-length STAT3 was performed on a DAWN^R 206 HELEOS^R II multi-angle static light scattering detector (WYATT) connected to a Superdex 200 207 208 10/300 GL size-exclusion column (GE Healthcare). Data were analyzed using Dynamics 7 209 program (WYATT). 210 211 Crystallization and structure determination

Peak fractions were analyzed by SDS-PAGE, pooled, and concentrated for assays. Mutant full-

212 All truncations of STAT3 NTD were screened for crystallization, and only residues 3-138 213 produced crystals. Crystals were grown by hanging drop vapor diffusion. One µL of STAT3 214 NTD at 8.5 mg/mL was mixed with 1 μ L of reservoir solution containing 20% (w/v) PEG3350 215 and 0.2 M magnesium formate. The drop was immediately streaked with a needle touched to the 216 small crystals grown from the same condition in the screening plate, and equilibrated against 500 μ L of the same reservoir solution at 4 °C. The crystal grew to a size of 200 μ m x 50 μ m x 50 μ m 217 in 3 days. The crystals were then transferred to reservoir solution containing additional 20% 218 219 ethylene glycol and flash cooled in liquid nitrogen. Diffraction data were collected at beamline 220 17-ID at the Advanced Photon Source (Argonne National Laboratory, USA), and processed and scaled using XDS (40). The structure of the STAT3 NTD was solved by molecular replacement 221 222 using Phaser (41) with the structure of the STAT4 NTD (PDB ID: 1BGF) as a search model.

The final model was built in COOT (42) and refined with Phenix (43), CNS (44) and Buster (Global Phasing, LTD) (45). Statistics of the data and model are summarized in **Table 1**. The structure has been submitted to the Protein Data Bank (PDB ID: 4ZIA).

226

227 Size-Exclusion Chromatography – Small Angle X-ray Scattering (SEC-SAXS)

228 SEC-SAXS experiments were performed at BioCAT (beamline 18-ID, Advanced Photon 229 Source at Argonne National Labs) (46). The set-up included a focused 12 KeV (1.03 Å) x-ray 230 beam, a 1.5 mm quartz capillary sample cell, a sample to detector distance of ~2.5 m, and a Mar165 CCD detector. The q-range sampled was ~ 0.0065 - 0.3 Å⁻¹. In order to ensure sample 231 monodispersity, we used an in-line SEC setup, which included an AKTA-pure FPLC unit and a 232 233 Superdex-200 10/300 GL column (GE Healthcare Life Sciences). The column outlet was 234 directly connected to the SAXS sample cell. One-second exposures were collected every 5 sec 235 during the gel-filtration chromatography run. Exposures before and after the elution of the sample were averaged and used as the buffer curve, and the exposures during elution (co-236 237 incident with the UV peak on the chromatogram) were treated as protein+buffer curves. Data were corrected for background scattering by subtracting the buffer curve from protein+buffer 238 curves. Data from the frame corresponding to the UV peak with S greater than 0.2 Å⁻¹ were 239 analyzed using PRIMUS, GNOM, DAMMIF, DAMMIN, CRYSOL, DAMAVER and 240 241 SUPCOMB of the ATSAS package (47) (Supplemental Figure S4). Molecular envelopes were 242 generated by averaging 20 bead models generated by DAMMIF, with DAMAVER to use as a starting model for DAMMIN, applying 2-fold symmetry. The radii of gyration, R_{g} , determined 243 by Guinier analysis or by GNOM were similar $(21.20 \pm 0.09 \text{ Å and } 21.35 \pm 0.09 \text{ Å respectively})$. 244

Molecular and Cellular

The maximum particle diameter $D_{\rm m}$, as determined by PRIMUS, was 74.7Å. The crystal

structure models were fitted to the envelope using SUPCOMB.

247

248 Electrophoretic mobility shift assay (EMSA)

DNA probes with 5-TAMRATM (Azide) modifications at the 5' ends were purchased 249 250 from Integrated DNA Technologies (DNA probe sequences listed in the corresponding figures). 251 The protein-DNA mixture (10 µL) for EMSA consisted of 100 nM of DNA probe, STAT3 protein at the indicated concentrations, 20 mM Tris HCl (pH 7.5), 150 mM NaCl, 1 mM DTT, 1 252 253 mg/mL bovine serum albumin (BSA, Roche, Indianapolis, IN), and 50 µg/mL salmon sperm 254 DNA (R&D Systems). The sample was incubated on ice for 30 min, while 10-well DNA 255 Retardation gels (6% polyacrylamide gel, Life Technologies) were pre-run in 0.5X TBE buffer at 200 V for 30 min at 4 °C. The sample was then added with 2 μ L of 50% (v/v) glycerol to 10%, 256 loaded onto the gel, and run in 0.5X TBE at 200 V for 45 min at 4 °C. The gel was scanned on a 257 Typhoon 9410 fluorescence scanner at the TAMRATM excitation and emission wavelengths. 258 259 Fluorescence polarization 260 Samples for fluorescence polarization (20 µL for 384-well plate) were prepared by 261

262 mixing 2 nM of DNA probe (as described for EMSA) and STAT3 protein at a series of

263 concentrations (serial dilution from 500 nM (STAT3 ΔNTD) or 150 nM (STAT3 FL and its

mutants) by 1.5 fold for 23 iterations) in PBS supplemented with 1 mM DTT, 1 mg/mL BSA

265 (Roche, Indianapolis, IN), and 50 μ g/mL salmon sperm DNA (R&D Systems). The fluorescence

266 polarization signal was recorded on an EnVision Multilabel plate reader (PerkinElmer) equipped

267 with Optimized Bodipy TMR FP Dual Emission Label. Data were fit using GraphPad Prism

with the following "log(agonist) vs. response -- Variable slope" equation to generate K_D and Hill slope:

270 $Y = Bottom + (Top-Bottom) / (1+10^{(LogKD-X) \cdot HillSlope)})$

271

272 Statistical analyses

Two-tailed T tests for paired samples were performed with Graphpad Prism 6 Software (La Jolla, CA). Data are presented as means ± SD for the indicated number of independent experiments (**Figure 5B**, **Supplemental Figure S1C**) or means ± SEM for one representative replicate (**Figure 2A&B**, **Figure 3C**, **Figure 4B**, **Figure 12B**).

277

278 Results

279 Identification of STAT3 NTD-dependent target genes

280 To identify transcripts whose expression is regulated by STAT3 NTD, we performed

ribosomal depletion RNA-Seq on STAT3-null mouse embryonic fibroblasts (MEFs) stably

282 expressing wild-type (WT) human STAT3 or a deletion mutant of the entire N-terminal domain

(residues 1-126; Δ NTD), which were then stimulated with leukemia inhibitory factor (LIF) to

induce STAT3 activation. Single clones expressing WT and Δ NTD STAT3 were chosen for

having similar STAT3 protein levels as the levels of endogenous STAT3 in wild-type MEFs, and

for showing comparable STAT3 phosphorylation in response to LIF stimulation (Figure 1).

287 Stimulation conditions were optimized in wild-type MEFs and STAT3-null MEFs stably

288 expressing WT STAT3. Relative mRNA levels of known STAT3 target genes, including EGR1,

289 SOCS3, JUNB, KLF4, and STAT3 (which positively regulates its own expression), were used to

choose an induction time point of 30 minutes and a LIF concentration of 10 ng/mL (Figure 2).

STAT3 mRNA is detectable in this system because these STAT3-null MEFs were generated via
partial rather than complete deletion of STAT3 that produces a frame-shifted mRNA unable to
encode functional protein (36, 37). These time point and cytokine concentration conditions were
used for RNA-Seq analyses.

295 We initially focused on the 100 genes most upregulated by LIF in STAT3-null MEFs 296 expressing WT STAT3 as detected by RNA-Seq. Many of these genes are known transcriptional 297 targets of STAT3 (including EGR1, STAT3, JUNB, and IER3 (48-51)), confirming that LIF induced STAT3 transcriptional activity in these cells. These genes are likely to be STAT3-298 299 dependent since LIF does not induce the transcription of known STAT3-regulated genes in 300 STAT3-null MEFs (Supplemental Figure S1). Among the top 100 LIF-induced genes, the 301 smallest gene induction observed was 1.48-fold for PACS1 and the largest gene induction was 302 4.34-fold for *EGR1* (Supplemental Table ST3). Significantly, 83 of these 100 genes showed at 303 least a twenty percent decrease in induction in MEFs carrying Δ NTD compared to WT STAT3 304 (Figure 3A&B left), indicating that they were likely directly regulated by STAT3 and that the 305 NTD was responsible for important functional effects on gene induction. However, we 306 considered the possibility that expression of Δ NTD STAT3 might decrease gene expression 307 through a non-specific effect. Thus, we repeated this analysis for 100 genes selected from those 308 that did not show any significant change with LIF stimulation in STAT3-null MEFs expressing 309 WT STAT3. In cells expressing Δ NTD STAT3, only 12 of these genes showed a decrease of at 310 least 20% compared to cells expressing WT STAT3 whereas 76 showed no change in induction 311 and 12 showed an increase of at least 20% (Figure 3A&B right), indicating that Δ NTD STAT3 312 did not affect gene expression non-specifically. From the 20 most highly LIF-induced genes, we

313	selected 4 for independent validation with qRT-PCR, and confirmed reduced induction of all of
314	these genes with STAT3 containing deletion of the NTD (Figure 3C).
315	We next considered the hypothesis that the NTD might play an especially critical role in
316	STAT3 transcriptional activity when Y705-phosphorylated STAT3 (P-STAT3) is present in
317	lower amounts by helping it bind to weak sites through cooperativity. To test this hypothesis, we
318	first transiently expressed WT or Δ NTD STAT3 in STAT3-null MEFs to achieve comparable
319	levels of total STAT3 and then stimulated the cells with a range of LIF concentrations to
320	determine the effect of NTD deletion on STAT3 tyrosine phosphorylation at low cytokine levels
321	(Figure 4A). We selected a concentration of LIF (0.5 ng/mL) for mRNA analyses because this
322	low dose induced observable PY-STAT3 levels in the MEFs. We then examined eight genes,
323	three previously validated to be dependent on the STAT3 NTD by qRT-PCR (EGR1, FOSB,
324	ERRF11) and five others that had independent evidence of STAT3-dependency. In cells with
325	Δ NTD STAT3, gene expression was not increased upon LIF induction but was in fact decreased
326	in all eight of these genes (Figure 4B), suggesting Δ NTD STAT3 may act as a dominant
327	inhibitory form under these low cytokine stimulation conditions. These analyses clearly indicate
328	a role for the NTD in the expression of a subset of STAT3-dependent genes.
329	
330	NTD deletion reduces STAT3 recruitment to target genes
331	To elucidate the mechanism by which NTD deletion reduces LIF-induced transcription of
332	STAT3 target genes, we investigated STAT3 binding to NTD-dependent genes using chromatin
333	immunoprecipitation (ChIP). If the NTD is essential for STAT3 cooperative DNA binding, then
334	we predicted that genes whose regulatory regions have tandem STAT3 binding motifs might

show less STAT3 DNA binding with the Δ NTD form of STAT3 compared to WT STAT3 (11, 335

MCB

337	containing tandem STAT3 binding sites, we utilized published STAT3 ChIP-Seq data sets with
338	experimental evidence of STAT3 binding and also a sequence-based algorithm (52) to predict
339	STAT3 binding sites. Using both approaches, we searched the promoters of NTD-dependent
340	genes for the presence of at least two proximal STAT3 consensus motifs (TTCN $_3$ GAA) and
341	identified 6 candidate genes (Figure 5A). NTD deletion reduced STAT3 recruitment to sites in
342	all of these genes (Figure 5B), directly correlating with the observed decreases in mRNA
343	transcript levels (Figure 5C) and supporting a role for the NTD in modulating STAT3
344	transcriptional activity at the level of DNA binding. The lack of full correlation between
345	reduction in STAT3 DNA binding measured with ChIP and gene expression measured with
346	RNA-Seq seen at this single time point is likely due to the rapid and transient nature of both
347	STAT3 chromatin recruitment and STAT3 target gene expression in response to LIF (Figure
348	2A&B, Supplemental Figure S2).
349	Based on recent evidence of the role of single-site cooperativity in activity of the related
350	transcription factor STAT1 (53), we considered the possibility that STAT3 NTD-mediated
351	cooperativity may not be restricted to genes with tandem binding sites. To test this hypothesis,
352	we analyzed the top 100 LIF-upregulated genes to identify genes that possess only a single
353	predicted STAT3 binding motif within a window 5 kb upstream and downstream of the
354	transcription start site. Of these 100 genes, only 4 had a single STAT site, which suggests that
355	binding to tandem sites may be generally important for STAT3-dependent gene regulation. We
356	then used ChIP to evaluate LIF-induced STAT3 DNA binding to these predicted motifs. Of the

13). To identify candidates among the 100 most LIF-upregulated genes with regulatory regions

357 4 genes with a single predicted STAT3 motif, only 2 (SNORD87 and ZFP184) showed LIF-

induced STAT3 DNA binding in STAT3-null MEFs stably expressing WT STAT3. For these 358

two genes, NTD deletion did not significantly reduce LIF-induced STAT3 binding to the
predicted motif (Supplemental Figure S3). Although this reflects the findings from only two
genes, these results are consistent with the hypothesis that NTD-mediated cooperative binding of
STAT3 occurs only with STAT3 binding to tandem sites.

363 Given the contribution of the NTD to STAT3 binding to tandem sites, we considered the 364 hypothesis that NTD-dependent genes have more STAT3 binding motifs than NTD-independent 365 genes. We compared the total number of STAT3 binding motifs in the regulatory regions of NTD-dependent vs. NTD-independent genes in a window 5 kb upstream and downstream of the 366 transcription start site (TSS). We did not find any significant difference in the number of 367 binding motifs, either upstream or downstream of the transcription start site, between NTD-368 dependent and NTD-independent genes (Supplemental Figure S4), suggesting that the spacing 369 370 or relative binding strength of STAT3 sites, rather than the total number of sites, might be the 371 key determinant of cooperativity.

372

373 Crystal structure of the STAT3 NTD

374 To better understand the structure-function relationship of the STAT3 NTD, we determined its crystal structure. The overall structure of the STAT3 NTD is similar to that of 375 376 STAT1 (54) and STAT4 NTD (55, 56). Eight α -helices fold into a triangle "hook" (Figure 6A), 377 starting with a ring of four small helices ($\alpha 1$ - $\alpha 4$), linked by a short $\alpha 5$ to a coiled-coil ($\alpha 6$ and 378 α 7), and ending with a long helix (α 8) perpendicular to the coiled-coil. Five copies of the 379 STAT3 NTD constitute the asymmetric unit of the crystal (Figure 7A). There are two significant protein-protein interfaces: a "handshake" dimer interface and a Ni²⁺-mediated 380 381 tetramer interface (Figure 6B).

Molecular and Cellular

MCB

382	The "handshake" dimer buries ~960 \AA^2 of surface area per monomer (~13% of the total
383	surface area) and is formed by the tip of the coiled-coil (Val ⁷⁷ and Leu ⁷⁸) inserting into the four-
384	helix ring of another monomer (Figure 6C). The resulting interface is further stabilized by
385	multiple hydrogen bonds (H-bonds). Across the three copies of "handshake" dimers in the
386	asymmetric unit (one of them formed with a monomer from the neighboring asymmetric unit),
387	the Val ⁷⁷ /Leu ⁷⁸ -ring interaction remains the same while several of the H-bonds are broken in
388	some copies (<i>e.g.</i> Glu^{16} -Arg ⁷⁰ , His ¹⁹ -His ⁸¹ , not shown here), consistent with the essential role of
389	Val^{77}/Leu^{78} in the dimerization of STAT NTDs (54, 57-61).
390	The Ni ²⁺ interface is formed by four coiled-coil segments (from four monomers)
391	centering a metal ion, designated Ni ²⁺ (Figure 6D), since STAT3 NTD is purified by Ni ²⁺ -NTA
392	and Ni ²⁺ shifts the STAT3 NTD from dimer to higher oligomer in size exclusion
393	chromatography (Supplemental Figure S5). Although the Ni ²⁺ is likely introduced in the
394	purification process, it may reflect a physiologically relevant interaction at this site. The Ni^{2+} ion
395	sits on a crystallographic 2-fold symmetry axis perpendicular to the non-crystallographic
396	symmetry (NCS) 2-fold axis and is coordinated in a square planar geometry by four histidine
397	residues (His ⁵⁸). Therefore, the Ni ²⁺ links four "handshake" NTD dimers into an octamer
398	(Figure 6D). This interface buries ~730 \AA^2 of surface area per monomer (~10% of the total
399	surface area) and has a network of H-bonds between coiled-coil helices (Figure 6D). The Trp^{37}
400	residue, previously reported to interfere with STAT tetramerization and cooperative DNA-
401	binding (11, 55, 62, 63), happens to lie at the center of this interface and forms an H-bond to
401 402	binding (11, 55, 62, 63), happens to lie at the center of this interface and forms an H-bond to Glu ⁶³ . Interestingly, the X-ray scattering data and <i>ab initio</i> envelopes indicate good agreement

MCI

404 respectively; NSD values after SUPCOMB alignment 0.91 and 1.00, respectively)

405 (Supplemental Figure S6).

406 To further assess the functional importance of both interfaces, we performed sequence alignment of the NTD for all STAT family members. The "handshake" dimerization interface of 407 the STAT3 NTD, which has been shown to mediate tetramerization of STAT proteins (54, 57-408 61), is structurally conserved in STAT1 and STAT4 (Figure 8A). The "Ni²⁺" interface also 409 appears in the STAT4 NTD structure, with Trp³⁷ in the middle of the interface. The Ni²⁺-410 coordinating His⁵⁸ in STAT3 overlays with Gln⁵⁸ in the STAT4 interface, with the side-chain 411 pointing in a similar orientation (Figure 8A). 412 We then compared the STAT3 NTD across species. Cross-species alignment of STAT3 413 414 NTD showed 90% sequence identity from zebrafish to human, precluding the functional evaluation of individual residues. STAT family alignment showed that the "handshake" 415 interface is more conserved than the "Ni²⁺" interface (Figure 8B), especially at the N-terminal 416 417 four-helical ring region (Figure 8C). Several regions of interest are apparent in the sequence alignment: 1) In the Val⁷⁷/Leu⁷⁸ tip of the "handshake" interface, Leu⁷⁸ is completely conserved, 418 and residues at the Val⁷⁷ position are always hydrophobic; 2) In the N-terminal helical ring 419 holding Val⁷⁷/Leu⁷⁸, both the hydrophobicity of the cavity (e.g. Trp⁴, Leu¹⁸, Leu¹⁵, Met²⁸, Phe³³) 420 and the ability to form H-bonds with the Val⁷⁷/Leu⁷⁸ backbone (e.g. Gln⁸, His¹⁹, Gln³²) are 421 conserved: 3) Trp³⁷ in the middle of the Ni²⁺ interface is completely conserved, its H-bond 422 acceptor Glu^{63} is Glu/Gln/His in the alignment; and 4) His^{58} coordinating the Ni^{2+} is only 423 424 conserved in STAT1, STAT3 and maybe STAT2 (a Phe residue is at this position, but a His residue is next to it). 425 426

427 Role of STAT3 NTD in cooperative DNA binding in vitro

Although NTD interactions are thought to mediate cooperative binding of STAT3 to 428 429 tandem sites in gene promoters (11-13), there has not been sufficient evidence of cooperativity using purified, full-length Y705-phosphorylated STAT3 (P-STAT3), probably due to difficulty 430 generating this protein. We purified recombinant full-length P-STAT3 (mouse β isoform) with 431 432 the help of an N-terminal SUMO fusion (cleaved subsequently) and co-expression with Elk1 tyrosine phosphatase (TKB1 (DE3) strain that has been used to produce P-STAT3 core domain 433 (8)). The Tyr⁷⁰⁵ phosphorylation and dimerization of P-STAT3 were confirmed by intact mass 434 LC-MS, peptide mapping, and size exclusion chromatography combined with multi-angle light 435 436 scattering (SEC-MALS) (Supplemental Figure S7). 437 We then investigated STAT3 NTD-dependent cooperative DNA binding using electrophoretic mobility shift assay (EMSA) with a 39 bp dsDNA probe from the well-438 characterized α 2-macrogobulin (α 2M) promoter, which contains one "weak" and one "strong" 439 440 STAT3 binding site (11, 12), each predicted to bind to a dimer of P-STAT3. We evaluated 441 STAT3 cooperativity under conditions when STAT3 protein levels were greater than or less than that of the $\alpha 2M$ probe. When STAT3 protein levels were less than that of the DNA probe, the 442 443 majority of WT P-STAT3 was bound to both sites and migrated as a tetramer suggesting a cooperative interaction between DNA-bound P-STAT3 dimers (Figure 9A). Under the same 444 445 binding conditions, Δ NTD P-STAT3 migrated mainly as a dimer and only as a tetramer when STAT3 protein levels were increased. This implies that cooperativity of P-STAT3 on tandem 446 447 promoter sites is mediated by the NTD. We further confirmed that these complexes represented

- 448 dimers and tetramers, respectively, by analytical size exclusion experiments (Supplemental
- 449 **Table ST5**). This approach also excluded the possibility that STAT3 tetramers were forming on

450 a single strong site, as has been suggested for STAT1. To further understand the effect of the 451 NTD on cooperative DNA binding, we investigated the effect on cooperativity of mutations in 452 the "handshake" dimer interface of the STAT3 NTD domain. STAT3 with point mutations in 453 this interface (Val⁷⁷Ala or Leu⁷⁸Ala) did not form DNA-bound tetramers on the α 2M probe until 454 levels of STAT3 protein were increased to stoichiometric excess (**Figure 9A**).

455 To assess the importance of the order of STAT3 binding sites on tetramer formation, we 456 swapped the positions of the "strong" and "weak" sites in the $\alpha 2M$ probe and found that this did not impact the cooperativity effect (Figure 9B). In fact, when a DNA probe with two "weak" 457 458 sites was used, the cooperativity effect appeared to be enhanced. Conversely, when two "strong" 459 sites were used, the cooperativity effect was slightly less evident. As a control, we used a DNA probe containing a single "strong" site, which did not show DNA-bound tetramers on EMSA. 460 To quantify the cooperativity observed with EMSA experiments, we performed 461 462 fluorescence polarization (FP) assays in which the output is a Hill coefficient that describes the 463 degree of cooperativity. A Hill coefficient of 1 indicates completely independent binding 464 whereas values greater than 1 indicate positive cooperativity. Using the same $\alpha 2M$ probe from EMSA analyses, WT STAT3 showed cooperative DNA binding with a Hill coefficient of 2.1 465 466 while Δ NTD abolished cooperativity resulting in a Hill coefficient of 1.1 (Figure 10A). The 467 binding affinity of WT STAT3 for the DNA probe was also slightly stronger than that of Δ NTD STAT3 ($K_{\rm D}$ = 8.2 nM and 25.2 nM, respectively). Point mutations in the "handshake" interface 468 469 also disrupted cooperativity, with Hill coefficients ~ 1 , and decreased binding affinity (K_D) to a 470 similar extent as did the NTD deletion mutation. In contrast, a negative control mutation Lys¹⁴⁰Met (64) and a mutation in the Ni²⁺-interface (His⁵⁸Ala) which is not involved in 471 tetramerization had no effect on the Hill coefficient or K_D. It has been reported that STAT3 472

473	cooperativity is promoter-specific, as it is not necessary for transcription of all genes with
474	multiple STAT3 motifs. For example, the SOCS3 promoter has tandem sites but does not require
475	STAT3 tetramerization on its promoter for transcription (65). Consistent with this, FP assays
476	performed using a probe from the SOCS3 promoter showed a negligible effect of NTD deletion
477	on the Hill coefficient and K_D compared to WT STAT3 (Figure 10A). In addition, NTD
478	deletion did not abrogate LIF-induced transcription of SOCS3 in our RNA-Seq experiment
479	(Figure 10B). Although LIF only slightly induced SOCS3 mRNA at the time point used for
480	RNA-Seq, analysis by RT-PCR of SOCS3 mRNA over a time course revealed that the
481	expression of SOCS3 is robustly induced yet tightly regulated over a relatively short timeframe,
482	consistent with its biological function in negative feedback regulation of STAT3 signaling
483	(Figure 2A&B).
484	

485 Evaluation of the NTD interfaces in transcriptional activity of STAT3

486 To understand the relevance of the observed NTD interfaces in STAT3 transcriptional activity, we investigated the effect of point mutations in these interfaces on LIF-induced STAT3 487 transcriptional activity. Using information from our determination of the STAT3 NTD crystal 488 structure, we evaluated Val⁷⁷Ala/Leu⁷⁸Ala, a double point mutation in the NTD "handshake" 489 dimer interface, and Trp³⁷Phe, a point mutation in the Ni²⁺-interface. The Trp³⁷Phe point 490 mutation was chosen for its conservation in the structure of the STAT4 NTD and because it was 491 492 previously reported to play a role in STAT tetramerization and cooperative DNA binding (11, 55, 62, 63). We stably expressed these two point mutants of the NTD in STAT3-null MEFs and 493 performed RNA-Seq. 494

495	We compared the effect of these interface mutations and ΔNTD on induction of the top
496	100 LIF-upregulated genes in MEFs expressing WT STAT3 (Figure 11A). This global
497	induction profile analysis showed that NTD deletion reduced the induction of the largest number
498	of these genes (82%), followed closely by the Ni^{2+} -interface mutant Trp ³⁷ Phe (76%), while the
499	"handshake" interface mutant Val ⁷⁷ Ala/Leu ⁷⁸ Ala reduced a significantly smaller number of
500	genes (44%) (Figure 11B). Next we evaluated the overlap in STAT3 target genes showing
501	reduced induction with these different NTD mutations. Thirty-six genes were in common for all
502	3 mutations, with the deletion and Trp ³⁷ Phe mutants showing extensive overlap (67 genes in
503	common) (Figure 11C). Although the Val ⁷⁷ Ala/Leu ⁷⁸ Ala mutation resulted in a relatively
504	smaller proportion of genes with decreased induction compared to WT, the majority of those
505	genes (38 of 44) that did show reduction were found in common with the NTD deletion mutant.
506	Interestingly, the "handshake" interface mutant also enhanced a significant portion (17%) of
507	STAT3 regulated genes, suggesting a role for this surface in STAT3 mediated gene suppression.
508	Decreased STAT3 target gene induction was confirmed in a transient expression system
509	with low concentrations of LIF. We first confirmed that a low concentration of LIF (0.5 ng/mL)
510	was sufficient to induce STAT3 tyrosine phosphorylation in this system (Figure 12A), and then
511	examined 6 LIF-upregulated genes from RNA-Seq that were previously validated by qRT-PCR
512	or had independent evidence of STAT3-dependency. All of these genes showed suppressed
513	induction of mRNA expression in MEFs expressing NTD-mutant compared to WT STAT3
514	(Figure 12B).
515	Given that STAT3 can also mediate gene repression, we examined the top 100 genes
516	from RNA-Seq whose expression was downregulated following LIF treatment in STAT3-null

517 MEFs expressing WT STAT3. LIF repressed the mRNA levels of these 100 genes by 30-55%.

We then evaluated the effect of NTD mutations on the fold change of mRNA expression (LIF vs. unstimulated) of these genes. Both point and deletion mutations in the NTD relieved the suppression of a majority of these LIF-downregulated genes (**Figure 13**). These findings indicate that the STAT3 NTD may be equally important in mediating gene repression as well as induction.

523 Collectively, these studies show that deletion and point mutations in the STAT3 NTD 524 known to disrupt cooperative DNA binding alter STAT3 regulation of its target genes, including genes whose expression is normally either upregulated or downregulated by STAT3. In our 525 526 studies, the W37F point mutant was more similar to the NTD deletion mutant in the proportion of LIF-upregulated genes affected, whereas the V77A/L78A point mutant reduced the induction 527 of a smaller percentage of LIF-upregulated genes. These data identify genes that are regulated by 528 529 the NTD and specific protein-interacting surfaces and will enable gene-specific mechanisms of 530 regulation to be elucidated.

531

532 Discussion

STAT3 is one of the most multi-faceted members of the STAT transcription factor 533 534 family, involved in diverse biological processes from development to immune response (1). 535 Importantly, it represents a promising target for anti-cancer therapy since it drives both the 536 proliferation and immune evasion of tumor cells (66-70) and is required by more than a dozen types of human cancers for survival (2, 4). STAT3 performs the majority of its functions 537 538 through protein-protein-interactions, many of which depend on the NTD (Supplemental Table ST1). Selective inhibition of the NTD has anti-tumor efficacy in vivo (7, 18, 71), further 539 540 implicating the role of this domain in STAT3-driven oncogenesis. Despite these promising data Molecular and Cellular Biology

MCB

supporting the STAT3 NTD as a therapeutic target in cancer, a comprehensive list of NTD-dependent genes was lacking and the structure of the NTD remained unknown.

To identify STAT3-regulated genes dependent on the NTD, we stably expressed STAT3 543 constructs with or without the NTD in STAT3-null MEFs, selected clones with approximately 544 equal levels of total STAT3 and LIF-induced P-STAT3 protein levels, and used RNA-Seq to 545 546 investigate genome-wide changes in gene transcription. Although the Δ NTD mutant had similar 547 levels of STAT3 phosphorylation in response to LIF activation, it decreased induction of many STAT3-regulated genes. The dependence of these genes on the NTD was further confirmed 548 549 using transient expression systems, in which WT and Δ NTD STAT3 protein levels were 550 stringently controlled to rule out potential differences arising during generation of the stable cell 551 lines. We found that the effect of NTD deletion was particularly prominent under low cytokine 552 concentrations when there are lower amounts of activated STAT3, consistent with a role of the NTD in facilitating STAT3 binding to "weak" STAT3 sites (11-13). Furthermore, deletion of 553 554 the NTD reduced STAT3 occupancy at target genes with tandem STAT3 binding motifs, where 555 cooperative binding to DNA is thought to be most important. Together, these data indicate that 556 the NTD is necessary for maximal transcription of a subset of STAT3 target genes.

At a single time point, there was not always a full correlation between the reduction in STAT3 DNA binding and STAT3 target gene expression upon NTD deletion. These findings likely reflect the tightly-regulated kinetics of LIF-induced STAT3 activation, and thus can better be appreciated in examining both of these processes over time (**Figure 2A&B**, **Supplemental**

- 561 **Figure S2**). The NTD could modulate the effect of LIF stimulation on STAT3 function via
- 562 several mechanisms including nucleo-cytoplasmic shuttling, chromatin remodeling or recruiting
- transcriptional proteins that affect the basal levels of STAT3 DNA binding or gene expression.

564	A subset of these affected genes may be regulated by cooperative STAT3 binding to tandem
565	DNA motifs. Alternative mechanisms are also possible. For example, it was recently reported
566	that the STAT1 NTD mediates single-site cooperativity (53), which has been attributed to
567	stronger protein-protein interactions within the STAT1 complex than between STAT1 and its
568	target gene regulatory regions. The STAT3 NTD shares a high degree of structural homology
569	with the STAT1 NTD (18), including the fact that amino acid 77 in the "handshake" interface
570	playing a critical role in tetramer formation. However, analytical size exclusion analyses found
571	that STAT3 tetramers did not form on single binding sites, only tandem sites (Supplemental
572	Table ST5). Furthermore, when we examined the effect of NTD deletion on STAT3 recruitment
573	to target genes with single STAT3 binding sites, we did not observe a significant reduction of
574	STAT3 DNA binding upon NTD deletion. Although our analysis was limited by the few genes
575	with single STAT3 sites among the top 100 LIF-upregulated genes, these findings suggest that
576	there may be differences in NTD-dependent interactions among STATs that contribute to
577	differential effects on cooperativity and transcriptional activity. Indeed, a small-molecule
578	inhibitor of the STAT3 NTD selectively binds the STAT3 NTD, but not the highly homologous
579	STAT1 NTD (18).
580	A global sequence analysis of the promoter regions of STAT3 NTD-dependent genes did
581	not reveal a significant dependence on the total number of STAT3 motifs, raising the possibility
582	that the STAT3 NTD can regulate STAT3 target gene expression via mechanisms such as
583	binding to other transcription factors. Indeed, the STAT3 NTD is known to modulate the ability
584	of STAT3 to form transcriptional enhanceosomes with other proteins (23-29). For example, the
585	α 2M promoter has a canonical binding site for the transcription factor c-Jun and mutations in the

586 NTD reduce the interaction between STAT3 and c-Jun, thus preventing maximal cytokine-

588	FoxP3, which induces epigenetic modifications that increase the access of STAT3 to adjacent
589	gene promoters (23). Thus, the STAT3 NTD confers broader gene-specific effects on the
590	function of STAT3 via discreet gene-specific mechanisms involving protein-protein interactions.
591	In addition to its importance in gene induction, we found that the NTD also plays a role
592	in STAT3 gene repression, consistent with previous findings (18). Indeed, a pharmacological
593	inhibitor of the STAT3 NTD, ST3-H2A2, activated the expression of 147 genes normally
594	repressed by STAT3 and selectively induced the apoptotic death of cancer cells (18). Thus,
595	interactions mediated by the NTD can contribute to both increases and decreases in gene
596	expression mediated by STAT3.
597	In order to characterize, at a molecular level, how the NTD affects gene regulation, we
598	determined the crystal structure of STAT3 NTD, which revealed two interfaces critical for
599	oligomerization. The "handshake" dimer interface, believed to be the functional unit of the
600	NTD, is structurally similar to that of the STAT1 and STAT4 NTDs (54-56) and is mediated by
601	interactions between Val^{77}/Leu^{78} and the N-terminal four-helix ring (Figure 6C). The second
602	oligomerization in the STAT3 NTD crystal structure was formed around a Ni ²⁺ ion linking four
603	"handshake" dimers into an octamer. Although the Ni^{2+} in the structure was likely introduced in
604	the purification process through the use of Ni ²⁺ -NTA, it may reflect a physiologically important
605	mechanism. STAT3 forms higher order oligomers, such as para-crystals and nuclear bodies (72,
606	73), to serve as active reservoirs resistant to dephosphorylation. Ni^{2+} has been reported to
607	activate inflammatory transcription factors like NF- κ B (74), while metal ions have been shown
608	to directly regulate STAT3 (31-33), another established pro-inflammation factor (75). Thus this
609	Ni ²⁺ -oligomer hints at a possible role of STAT3 in Ni ²⁺ -mediated inflammation. We further

induced transcription (11). The STAT3 NTD also enables STAT3 binding to the pioneer factor

MCB

showed that the STAT3 NTD mediates cooperativity via the conserved "handshake" dimer
interface (Figure 8B&C) rather than the "Ni²⁺" interface, consistent with reported mutagenesis
data for STAT family members (13, 20, 54, 56-61). Data suggest a structural model of two
STAT3 dimers on tandem DNA sites, "holding hands" by NTD dimerization, in a *syn* geometric
arrangement (Figure 7C), which agrees with the near-one-turn inter-site spacing optimal for
cooperativity (11).

The crystal structure of STAT3 NTD may be used to provide novel drug design concepts. 616 For example, the helical ring encompassing Val^{77}/Leu^{78} (Figure 6C) is a good candidate small 617 618 molecule pocket. Indeed, a peptide mimetic of the α^2 helix in the "handshake" interface induced apoptosis of breast and prostate cancer cells but not normal cells (7, 18, 71). A somatic mutation 619 in this interface (Leu⁷⁸Arg) has been found in inflammatory hepatocellular adenoma, where it 620 621 disrupts homotypic interactions between unphosphorylated STAT3 dimers (20). This suggests that targeting the NTD "handshake" interface may selectively inhibit the expression of a subset 622 623 of genes normally regulated by unphosphorylated STAT3. We compared the effect of mutations 624 on these NTD surfaces with an NTD-deleted protein on those genes most affected by LIF induction. We found that the "Ni²⁺" interface (Trp³⁷Phe) more closely reproduced the NTD 625 deletion mutant effect on LIF-upregulated genes than the "handshake" interface (V⁷⁷A/L⁷⁸A) 626 mutant. Importantly, our data show that the NTD interaction surfaces that mediate gene 627 regulation may have numerous, perhaps concomitant, functional roles and any putative 628 cooperative DNA binding may be difficult to characterize at the cellular level. 629 630 STAT3 cooperative binding to DNA has been proposed as an NTD-mediated regulatory

631 mechanism (11, 12, 65, 76). To fully characterize this effect *in vitro*, we performed EMSA and

- fluorescence polarization assays on full-length purified P-STAT3 with DNA probes containing
 - 28

Molecular and Cellular

633 tandem STAT3 motifs. Cooperative binding only occurred in the presence of the NTD and was 634 most pronounced with adjacent "weak" STAT3 motifs. Besides STAT3, STAT5 can also form tetramers through its NTD. As with STAT3-regulated genes, some STAT5 target genes such as 635 $IL-2R\alpha$ have pairs of "weak" binding sites in their promoter that require STAT5 cooperative 636 637 binding for transcriptional activation (77).

638

639 In summary, we identified STAT3 target genes that require the NTD for optimal

expression, which may include genes affected by cooperative DNA binding. We also 640

determined the crystal structure of the STAT3 NTD, and proposed the key residues in NTD 641

interfaces important for cooperative DNA binding, formation of higher order oligomers, and 642

perhaps other protein-protein interactions. These results provide insight into the mechanism of 643

NTD-mediated STAT3 functions, and may serve as a structural template for inhibitor design. 644

645

646 Acknowledgements

647 This work was supported by grants from the National Cancer Institute (R01-CA160979,

T32GM007226, F30 CA180340-01) and the Brent Leahey Fund. The authors thank Sarah 648

Walker and Kirk Clark for helpful discussions, the staff at IMCA-CAT for support and to 649

Stephen Harrison for his scientific mentorship. 650

651 This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by 652 653 Argonne National Laboratory under Contract No. DE-AC02-06CH11357. BioCAT is supported by grant P41 GM103622 from the National Institute of General Medical Sciences of the National 654 655 Institutes of Health.

656 References 657 Stark GR, Darnell JE, Jr. 2012. The JAK-STAT pathway at twenty. Immunity 36:503-514. 1. 658 659 2. Bromberg J. 2002. Stat proteins and oncogenesis. J Clin Invest 109:1139-1142. 660 661 3. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. 1999. 662 Stat3 as an oncogene. Cell 98:295-303. 663 664 4. Buettner R, Mora LB, Jove R. 2002. Activated STAT signaling in human tumors provides novel 665 molecular targets for therapeutic intervention. Clin Cancer Res 8:945-954. 666 Levy DE, Inghirami G. 2006. STAT3: a multifaceted oncogene. Proc Natl Acad Sci U S A 667 5. 668 103:10151-10152. 669 670 6. Sansone P, Bromberg J. 2012. Targeting the interleukin-6/Jak/stat pathway in human 671 malignancies. J Clin Oncol 30:1005-1014. 672 673 7. Timofeeva OA, Gaponenko V, Lockett SJ, Tarasov SG, Jiang S, Michejda CJ, Perantoni AO, 674 Tarasova NI. 2007. Rationally designed inhibitors identify STAT3 N-domain as a promising 675 anticancer drug target. ACS Chem Biol 2:799-809. 676 Becker S, Groner B, Muller CW. 1998. Three-dimensional structure of the Stat3beta homodimer 677 8. 678 bound to DNA. Nature **394:**145-151. 679 680 9. Nkansah E, Shah R, Collie GW, Parkinson GN, Palmer J, Rahman KM, Bui TT, Drake AF, Husby J, 681 Neidle S, Zinzalla G, Thurston DE, Wilderspin AF. 2013. Observation of unphosphorylated STAT3 682 core protein binding to target dsDNA by PEMSA and X-ray crystallography. FEBS Lett 587:833-683 839. 684 685 10. Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen 686 X. 2008. Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1-5. 687 688 689 11. Zhang X, Darnell JE, Jr. 2001. Functional importance of Stat3 tetramerization in activation of the 690 alpha 2-macroglobulin gene. J Biol Chem 276:33576-33581. 691 692 12. Lerner L, Henriksen MA, Zhang X, Darnell JE, Jr. 2003. STAT3-dependent enhanceosome 693 assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-694 macroglobulin gene. Genes Dev 17:2564-2577.

695		
696 697	13.	Lin JX, Li P, Liu D, Jin HT, He J, Ata Ur Rasheed M, Rochman Y, Wang L, Cui K, Liu C, Kelsall BL, Ahmed R, Leonard WJ. 2012. Critical Role of STAT5 transcription factor tetramerization for
698		cytokine responses and normal immune function. Immunity 36: 586-599.
699		
700 701	14.	Cimica V, Chen HC, Iyer JK, Reich NC. 2011. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS One 6 :e20188.
702		
703 704	15.	Pranada AL, Metz S, Herrmann A, Heinrich PC, Muller-Newen G. 2004. Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 279: 15114-15123.
705		
706	16.	Vogt M, Domoszlai T, Kleshchanok D, Lehmann S, Schmitt A, Poli V, Richtering W, Muller-
707 708		shuttling of latent STAT3. J Cell Sci 124: 900-909.
709		
710	17.	Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, Zhang X,
711		Korostyshevskiy VR, Cheema A, Zhang L, Dakshanamurthy S, Brown ML, Dritschilo A. 2012.
712		287: 14192-14200.
714		
715	18.	Timofeeva OA, Tarasova NI, Zhang X, Chasovskikh S, Cheema AK, Wang H, Brown ML,
716 717		Dritschild A. 2013. STATS suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci U S A 110 :1267-1272.
718		
719	19.	Zhao Y, Zeng C, Tarasova NI, Chasovskikh S, Dritschilo A, Timofeeva OA. 2013. A new role for
720		STAT3 as a regulator of chromatin topology. Transcription 4: 227-231.
721		
722	20.	Domoszlai T, Martincuks A, Fahrenkamp D, Schmitz-Van de Leur H, Kuster A, Muller-Newen G.
723 724		2014. Consequences of the disease-related L/8R mutation for dimerization and activity of STAT3.
724		J Cell JCI 127.1895-1910.
725		
726	21.	Pilati C, Amessou M, Bihl MP, Balabaud C, Nhieu JT, Paradis V, Nault JC, Izard T, Bioulac-Sage P,
727		Couchy G, Poussin K, Zucman-Rossi J. 2011. Somatic mutations activating STAT3 in human inflammatory benatocollular adoptmas. J. Exp. Med 209 :1259, 1266
120		
729		
730	22.	Primiano T, Baig M, Maliyekkel A, Chang BD, Fellars S, Sadhu J, Axenovich SA, Holzmayer TA,
/31 732		Koninson IB. 2003. Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell 4 :41-53.
733		

Accepted Manuscript Posted Online

Molecular and Cellular Biology

MCB

Molecular and Cellular Biology

734 735 736	23.	Hossain DM, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, Saha T, Chakraborty S, Kar RK, Das T, Chatterjee S, Sa G. 2013. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity 39: 1057-1069.
737 738 739 740	24.	Hou T, Ray S, Brasier AR. 2007. The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression. The Journal of biological chemistry 282 :37091-37102.
741 742 743 744	25.	Ray S, Boldogh I, Brasier AR. 2005. STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129: 1616-1632.
745 746 747 748	26.	Ray S, Lee C, Hou T, Bhakat KK, Brasier AR. 2010. Regulation of signal transducer and activator of transcription 3 enhanceosome formation by apurinic/apyrimidinic endonuclease 1 in hepatic acute phase response. Molecular endocrinology 24 :391-401.
749 750 751 752	27.	Ray S, Lee C, Hou T, Boldogh I, Brasier AR. 2008. Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic acids research 36 :4510-4520.
753 754 755 756	28.	Ray S, Zhao Y, Jamaluddin M, Edeh CB, Lee C, Brasier AR. 2014. Inducible STAT3 NH2 terminal mono-ubiquitination promotes BRD4 complex formation to regulate apoptosis. Cellular signalling 26: 1445-1455.
757 758 759	29.	Wang WB, Levy DE, Lee CK. 2011. STAT3 negatively regulates type I IFN-mediated antiviral response. Journal of immunology 187: 2578-2585.
760 761 762	30.	Ndubuisi MI, Guo GG, Fried VA, Etlinger JD, Sehgal PB. 1999. Cellular physiology of STAT3: Where's the cytoplasmic monomer? J Biol Chem 274: 25499-25509.
763 764 765 766	31.	Chua AC, Klopcic BR, Ho DS, Fu SK, Forrest CH, Croft KD, Olynyk JK, Lawrance IC, Trinder D. 2013. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS One 8:e78850.
767 768 769 770	32.	Novak U, Ji H, Kanagasundaram V, Simpson R, Paradiso L. 1998. STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem Biophys Res Commun 247: 558-563.
771		

Molecular and Cellular Biology

MCB

772 773 774	33.	Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S, Atsumi T, Ueda N, Azuma I, Hirota H, Murakami M, Hirano T. 2010. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol 22:375-386.
775 776 777	34.	Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, Cao X. 2006. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 172: 245-257.
778 779 780 781 782	35.	Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC. 2009. Function of mitochondrial Stat3 in cellular respiration. Science 323 :793-797.
783 784 785 786 787	36.	Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is'harc H, Gesualdo I, Newman SJ, Kerr IM, Poli V. 2002. Mutational switch of an IL-6 response to an interferon-gamma-like response. Proceedings of the National Academy of Sciences of the United States of America 99: 8043-8047.
788 789 790 791	37.	Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. 2001. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Molecular and cellular biology 21 :1621-1632.
792 793 794	38.	Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017-1018.
795 796 797 798	39.	Nelson EA, Walker SR, Alvarez JV, Frank DA. 2004. Isolation of unique STAT5 targets by chromatin immunoprecipitation-based gene identification. The Journal of biological chemistry 279: 54724-54730.
799 800 801	40.	Karplus PA, Diederichs K. 2012. Linking crystallographic model and data quality. Science 336 :1030-1033.
802 803 804	41.	McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40:658-674.
805 806 807	42.	Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486-501.
808 809 810	43.	Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson

811 812		JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213-221.
813		
814	44.	Brunger AT. 2007. Version 1.2 of the Crystallography and NMR system. Nat Protoc 2:2728-2733.
815		
816	45.	Blanc E, Roversi P, Vonrhein C, Flensburg C, Lea SM, Bricogne G. 2004. Refinement of severely
817 818		Crystallogr 60: 2210-2221.
819		
820	46.	Mathew E, Mirza A, Menhart N. 2004. Liquid-chromatography-coupled SAXS for accurate sizing
821		of aggregating proteins. Journal of synchrotron radiation 11: 314-318.
822		
823	47.	Konarev P, Petoukhov M, Volkov V, Svergun D. 2006. ATSAS 2.1, a program package for small-
824		angle scattering data analysis. J. Appl. Crystallogr. 39: 277-286.
825		
826	48.	Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N, Savatier P. 2009.
827		Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm
828		differentiation in cooperation with Nanog. Stem Cells 27:1760-1771.
829		
830	49.	Carpenter RL, Lo HW. 2014. STAT3 Target Genes Relevant to Human Cancers. Cancers 6:897-925.
831		
832	50.	Snyder M, Huang XY, Zhang JJ. 2008. Identification of novel direct Stat3 target genes for control
833		of growth and differentiation. The Journal of biological chemistry 283: 3791-3798.
834		
835	51.	Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A, Frank DA. 2005. Identification of a
836		genetic signature of activated signal transducer and activator of transcription 3 in human tumors.
837		Cancer Kes 65: 5054-5062.
838		
839	52.	Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. 2004. JASPAR: an open-access
840		database for eukaryotic transcription factor binding profiles. Nucleic acids research 32 :D91-94.
841		
842	53.	Begitt A, Droescher M, Meyer T, Schmid CD, Baker M, Antunes F, Knobeloch KP, Owen MR,
843 911		1 from type 2 interferen signaling. Nature immunology 15 :169, 176
044		1 nom type 2 interieron signaling. Nature inimunology 13. 108-176.
845		
846	54.	Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B,
847 878		Darnell JE, JF., Chen X. 2005. Structural bases of unphosphorylated STAT1 association and recentor binding. Mol Cell 17 :761-771
040		
849		

850 851	55.	Vinkemeier U, Moarefi I, Darnell JE, Jr., Kuriyan J. 1998. Structure of the amino-terminal protein interaction domain of STAT-4. Science 279: 1048-1052.
852 853 854 855	56.	Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell JE, Jr., Kuriyan J. 2003. A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci 12 :361-365.
856 857 858 859 860	57.	Hou Z, Srivastava S, Mistry MJ, Herbst MP, Bailey JP, Horseman ND. 2003. Two tandemly linked interferon-gamma-activated sequence elements in the promoter of glycosylation-dependent cell adhesion molecule 1 gene synergistically respond to prolactin in mouse mammary epithelial cells. Mol Endocrinol 17: 1910-1920.
861 862 863 864	58.	Meyer T, Hendry L, Begitt A, John S, Vinkemeier U. 2004. A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem 279: 18998-19007.
865 866 867 868	59.	Ota N, Brett TJ, Murphy TL, Fremont DH, Murphy KM. 2004. N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol 5: 208-215.
869 870 871 872	60.	Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE, Jr. 2006. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 20:3372-3381.
873 874 875 876	61.	Wenta N, Strauss H, Meyer S, Vinkemeier U. 2008. Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci U S A 105: 9238-9243.
877 878 879	62.	John S, Vinkemeier U, Soldaini E, Darnell JE, Jr., Leonard WJ. 1999. The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 19 :1910-1918.
880 881 882	63.	Murphy TL, Geissal ED, Farrar JD, Murphy KM. 2000. Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Mol Cell Biol 20: 7121-7131.
883 884 885 886	64.	Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, Chance MR, Chen X, Du Y, Wang Y, An L, Wang Q, Lu T, Zhang X, Wang Z, Stark GR. 2010. Reversible methylation of promoter- bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 107 :21499-21504.
887		

888 65 889 890	Zhang L, Badgwell DB, Bevers JJ, 3rd, Schlessinger K, Murray PJ, Levy DE, Watowich SS. 2006. IL-6 signaling via the STAT3/SOCS3 pathway: functional analysis of the conserved STAT3 N- domain. Mol Cell Biochem 288: 179-189.
891 892 66 893	Brantley EC, Benveniste EN. 2008. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6: 675-684.
894 895 67 896 897	Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, Priebe W, Heimberger AB. 2007. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67:9630-9636.
898 899 68 900 901	Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA. 2006. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A 103: 9964-9969.
902 903 69 904 905	Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H. 2005. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11: 1314-1321.
906 907 70 908	Yu H, Kortylewski M, Pardoll D. 2007. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7: 41-51.
909 910 71 911	Timofeeva OA, Tarasova NI. 2012. Alternative ways of modulating JAK-STAT pathway: Looking beyond phosphorylation. JAKSTAT 1: 274-284.
912 913 72 914 915 916	Droescher M, Begitt A, Marg A, Zacharias M, Vinkemeier U. 2011. Cytokine-induced paracrystals prolong the activity of signal transducers and activators of transcription (STAT) and provide a model for the regulation of protein solubility by small ubiquitin-like modifier (SUMO). J Biol Chem 286: 18731-18746.
917 918 73 919	Herrmann A, Sommer U, Pranada AL, Giese B, Kuster A, Haan S, Becker W, Heinrich PC, Muller- Newen G. 2004. STAT3 is enriched in nuclear bodies. J Cell Sci 117:339-349.
920 921 74 922	Freitas M, Fernandes E. 2011. Zinc, cadmium and nickel increase the activation of NF-kappaB and the release of cytokines from THP-1 monocytic cells. Metallomics 3: 1238-1243.
923 924 75 925 926	Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, Yamada M, Harada M, Jiang JJ, Kamimura D, Ogura H, Hirano T, Murakami M. 2014. Inflammation amplifier, a new paradigm in cancer biology. Cancer research 74:8-14.
927	

928 929	76.	Bode JG, Fischer R, Haussinger D, Graeve L, Heinrich PC, Schaper F. 2001. The inhibitory effect of IL-1 beta on IL-6-induced alpha 2-macroglobulin expression is due to activation of NF-kappa B
930		J Immunol 167: 1469-1481.
931		

932 77. Meyer WK, Reichenbach P, Schindler U, Soldaini E, Nabholz M. 1997. Interaction of STAT5
 933 dimers on two low affinity binding sites mediates interleukin 2 (IL-2) stimulation of IL-2 receptor
 934 alpha gene transcription. J Biol Chem 272:31821-31828.

935

936

937

Accepted Manuscript Posted Online

938 Figure legends

939	Figure 1. Characterization of STAT3-null mouse embryonic fibroblasts (MEFs) stably
940	expressing wild-type (WT) or NTD-mutant STAT3.
941	STAT3-null MEFs stably expressing WT, W37F, NTD-deleted (Δ NTD), and V77A/L78A
942	STAT3 were stimulated with LIF and analyzed by immunoblot. (-), negative control for STAT3
943	expression from parental STAT3-null MEFs. Tubulin serves as a loading control.
944	
945	Figure 2. Optimization of time point and cytokine concentration for mRNA and ChIP analyses.
946	Wild-type MEFs and STAT3-null MEFs stably expressing wild-type (WT) STAT3 were
947	stimulated with (A) LIF (10 ng/mL) for a range of time points and (B) different concentrations of
948	LIF for 30 min then analyzed by qRT-PCR for expression of the indicated STAT3 target genes.
949	Data normalized to HPRT and then to mRNA expression in unstimulated cells.
950	
951	Figure 3. NTD deletion reduces induction of LIF-upregulated genes.
952	(A) Induction of the top 100 LIF-upregulated genes and 100 non-LIF-regulated genes in STAT3-
953	null MEFs stably expressing wild-type (WT) or Δ NTD STAT3. (B) Percent of genes in (A) with
954	significantly altered induction (20% threshold) in Δ NTD relative to WT STAT3. (C) qRT-PCR
955	validation of select LIF-upregulated genes in STAT3-null MEFs stably expressing WT or Δ NTD
956	STAT3 (normalized to HPRT).
957	
958	Figure 4. NTD deletion reduces induction of STAT3 target genes at low concentrations of LIF.
959	(A) STAT3-null MEFs transiently transfected with wild-type (WT) or Δ NTD STAT3 (0.2

960 μ g/mL) for 24 h then stimulated with the indicated concentrations of LIF for 15 min were

analyzed by immunoblot (actin serves as a loading control). **(B)** STAT3-null MEFs transiently transfected with WT or Δ NTD STAT3 then stimulated with LIF (0.5 ng/mL) for 30 min were analyzed by qRT-PCR for expression of the indicated STAT3 target genes (normalized to HPRT; representative of N = 3).

965

Figure 5. NTD deletion reduces STAT3 DNA binding to target genes.

967 (A) Regulatory regions of LIF-induced genes containing tandem STAT3 binding motifs (Bold

968 blue underline, "strong" sites; Non-bold red underline, "weak" sites). Chromosome locations

969 given based on mm9 assembly. (B) STAT3-null MEFs stably expressing wild-type (WT) or

970 NTD-deleted (Δ NTD) STAT3 were stimulated with LIF then analyzed by chromatin

971 immunoprecipitation with an antibody for STAT3 followed by qRT-PCR using primers flanking

972 the STAT3 binding sites indicated in (A). Data expressed as fold change of % input in LIF-

973 stimulated vs. unstimulated cells (N = 3). (C) RNA-Seq transcript levels in STAT3-null MEFs

974 stably expressing WT or Δ NTD STAT3. Data expressed as fold change of mRNA expression in

975 LIF-stimulated vs. unstimulated cells.

976

977 Figure 6. Crystal structure of the STAT3 NTD.

978 (A) Overall structure of the STAT3 NTD monomer in two view-angles. (B) Two interfaces are

979 observed in the crystal structure: a "handshake" dimer interface and a Ni^{2+} -mediated tetramer

980 interface. (C) The two molecules of the "handshake" dimer are related by a 2-fold non-

981 crystallographic symmetry (NCS) axis. V77 and L78 dock into the opposing molecule in a

982 cavity created mainly by the three N-terminal helices. Multiple hydrogen-bonds also form on the

983 dimer interface. (D) Another 2-fold NCS is observed in the crystal which involves multiple

Molecular and Cellular Biology

Moleo

Ni²⁺ ion sits in the middle of the axis and is coordinated by four H58 residues, thus linking four 985 "handshake" STAT3 dimers into an octamer. Also shown are the C-terminus of each NTD 986 which links to the STAT3 core domain. 987 988 Figure 7. Model of cooperative binding between two STAT3 dimers. 989 (A) Asymmetric unit of STAT3 NTD crystal contains five copies of the molecules. Along with 990 991 one copy from the neighboring unit, they form three "handshake" dimers with similar 992 organization as shown from the superimposed image in (B). (C) A model of two STAT3 dimers cooperatively binding to a tandem-site DNA with the help of NTD dimerization on each side. 993 994 Figure 8. Structural comparison and sequence alignment of the STAT3 NTD. 995 (A) STAT1 (PDB ID: 1YVL), STAT3, and STAT4 (1BGF) share similar "handshake" 996 dimerization interfaces of their NTDs. The Ni²⁺-interface observed in STAT3 is similar to a 997 second dimer interface observed in the crystal structure of the STAT4 NTD, both of which 998 contain W37 in the middle of the interface. The H58 that coordinates Ni²⁺ in STAT3 999 corresponds to an Asn residue in STAT4. (B) Sequence alignment of NTD across STAT 1000 1001 proteins. (C) The STAT3 NTD surface colored by conservation scores calculated by ConSurf

hydrogen bonds between two long helices antiparallel to each other from two NTD molecules. A

server based on the sequence alignment in (B). The "handshake" interface is more conserved
than the Ni²⁺ interface.

1004

1005 Figure 9. NTD mutations disrupt STAT3 cooperative DNA binding *in vitro*.

Molecular and Cellular Biology

MCB

Molecular and Cellular Biology

1006	(A) Electrophoretic mobility shift assay (EMSA) of purified pY705 STAT3 (P-STAT3) binding
1007	to an α 2M DNA probe containing two STAT3-binding sites (5' –
1008	AGCAGTAACTGGAAAGTCCTTAATCCTTCTGGGAATTCT - 3', STAT3 binding sites
1009	underlined). The 5' site is a "weak" binding site while the 3' site is a "strong" binding site. (B)
1010	EMSA of P-STAT3, NTD-deleted (Δ NTD) or wild-type (WT), on various DNA probes derived
1011	from the $\alpha 2M$ promoter (sequences listed).
1012	
1013	Figure 10. (A) Fluorescence polarization assay of wild-type (WT) and NTD-mutant P-STAT3
1014	binding to the indicated DNA probes. (B) Induction of SOCS3 mRNA levels (LIF vs.
1015	unstimulated) in STAT3-null MEFs stably expressing wild-type (WT) or Δ NTD STAT3 from
1016	RNA-Seq.
1017	
1018	Figure 11. NTD interface mutations reduce induction of STAT3 target genes.
1019	(A) Induction of the top 100 LIF-upregulated genes in STAT3-null MEFs stably expressing
1020	wild-type (WT) or NTD-mutant STAT3. (B) Percent of genes with significantly altered
1021	induction (20% threshold) in NTD mutants relative to WT STAT3. (C) Overlap of genes
1022	affected by NTD point vs. deletion mutation.
1023	
1024	Figure 12. NTD interface mutations reduce induction of LIF-upregulated genes at low
1025	concentrations of LIF.
1026	STAT3-null MEFs transiently transfected with WT or NTD-mutant STAT3 (0.2 μ g/mL) for 24 h
1027	then stimulated with (A) LIF (0.5 ng/mL) were analyzed by immunoblot (tubulin serves as a

- 1028 loading control) and with (B) the indicated concentrations of LIF were analyzed by qRT-PCR for
- 1029 STAT3 target gene expression (normalized to HPRT; representative of N = 3).
- 1030
- 1031 Figure 13. Fold change of the top 100 LIF-downregulated genes in STAT3-null MEFs stably
- 1032 expressing wild-type (WT) or NTD-mutant STAT3.

Table 1. Crystallography statistics.

Data collection Statistics	
Space group	P4122
Unit cell	
a, b, c (Å)	109.01, 109.01, 154.30
α, β, γ (°)	90, 90, 90
Wavelength (Å)	1.0
Resolution range (Å)	20 - 2.7
Completeness (%)	100.0 (99.6)
R _{sym} (%)	7.5 (38.8)
$/\sigma$	19.4 (5.5)
Redundancy	8.0 (8.2)
Wison B factor ($Å^2$)	54.0
Refinement Statistics	
Number of reflections	
Working set	24803
Test set	1329
Number of atoms	5149
Rmsd Bonds (Å)	0.009
Rmsd angles (°)	1.1
R_{work} (%)	23.5
R_{free} (%)	27.2
B factor $(Å^2)$	59.6
Ramachandran plot	
Most favored (%)	96.8
Additionally allowed (%)	3.2
Disallowed (%)	0

Molecular and Cellular Biology

MCB

Figure 2

ERRFI1 KDM6B NR4A1

RBM38 TRERF1

E2F7

EGR1

FOSB

Figure 5

A E2F7 chr10:110746119-110746318

TTTTCGTCTTCCCAGATTTCCAGTGAT TCCTAAGTATATTTTAAGTGTTTGTCC GTGTGAGTTTTAATGAGGAATGGAGGG TGTCTTCA<u>TTCTTGGAAAAATTCCAGGA</u> ATGCTGTAGGAAGGGAAAGTTGATGTT CACAAGTGGCATTTTGTCGTTGTTGTT GTAGGGGGAAATAAATGTAAAATCATT TTCTGATATAG

RBM38

В

С

chr2: 173026640-173026841

TTGTGCCACACACAGGCACCGGTATAA GCAAGTGCCATAGTGTCTAGGTCCCAT AAGGGCCCCACACTGTACCAGACATTT CCTGCACAGGCACATGGAGTGGGGTGA GGCTGGGGGAAGGGCATTGTTTCTGTG CC<u>TTCAGAGAG</u>GGAAGGTTGGGGGGAGG GACATTGCTCCTGTGCC<u>TTCAGAGAG</u>A GTTACTAGTTTCA

GARNL3 chr2:33087180-3087319

CTGACTCTCTGCCAGGACACTGTTTGA TAGG<mark>CTCCAAGAA</mark>AGACAGCATGAGAG AAATGAGATTAGAGTCTAATGGTATTC TGCCTCCACCAT<mark>TTCACAGAA</mark>ATGGCT GAATTAATCTT<u>ATATGAGAA</u>ATTTAAC CTTTT

STAT3

chr 11: 100939668-100939869

CTCCCTGAGTTGGCTG<u>TTCTGAGAG</u>CT TTGTGCTCCTCCCTCCGCGACCAAGGG ACGCGCAGAGGCCTAGCTTACAAAAAA GCCCGGGGGGGAGGGAGGAGACA<u>TTAGC</u> GGAATGTCCTGCTGAAAACTCAGCTGA G<u>TTCCTGGCA</u>GTGCGTGACGTCAAGAC ACTTTAAA<u>TGCCCTGAT</u>ACGGCTCGCT TCTGCCCGCTCTC

NR4A1 chr15:101272824-101272949

AAAAAATCCCTGGC<u>TTCATTGAG</u>CTT<u>T</u> GCCCAGGA</u>GACCAAGACCTGTTGCTAG AGTCTGCC<u>TTCCTGGAA</u>CTCTTCATCC TCCGCCTGGCATACCGGTAAGCTGCCC ACCATCCTCCTAGCCCTG

TRERF1

chr 17: 47225224-47225425

TATTGCTGTGTTGCAAAAACTTAATGG GCTGGAGGCCTGGGGGCCGTCTTTATCT GCAATGAAAACCTAAGACATTGAGAGT GGAGATGTTACTGGCAGTGTTTTTGCT AGAAGAATTGTGTGCCCCGTCACTTCC AAACTAGCATGGTCAGAGCGGGGAGGC GGATCTGATAGCAGGTCTGCGGGAGTG GGAGGTGTTTAAA

Accepted Manuscript Posted Online

MCB

Molecular and Cellular Biology

Figure 8

в

mSTAT3 NTD	1000000 1000000	α2 000000 20	α3 000000 30	a4 a5 2222200 22 40
$\begin{array}{c} mSTAT3_1-126_P42227-1\\ hSTAT3_1-126_P42763-1\\ hSTAT3_1-126_P4224-1\\ hSTAT2_1-126_P52230-1\\ hSTAT4_1-126_Q12765\\ hSTAT54_1-126_Q12765\\ hSTAT55_1-126_P42229-1\\ hSTAT55_1-126_P51692\\ hSTAT6_1-126_P42226-1\\ \end{array}$	ACENCLOULDT ACENCLOLDT ACENCLOLDT ACENTILCIDS ACENTILCIDS ACENTICACION	RYLEQLHOLYSDS RYLEQLHOLYSDS RYLEQVHOLYSDS FPLEQVHOLYSDS KPLEQVHOLYSDS KPLEQVHOLYSDS ALROMONLYGOI ALROMONLYGOI	S. FOMEIROF B. FOMEIROF S. FOMEIROF S. FOMEIROF A. FOMEIROF A. FOMEIROF B. FOMEIROF A. FOILEVENY A. FOILEVENY A. FOILEVENY A. FOILEVENY A. FOILEVENY A. FOILEVENY	A PPH TESSODO A A BORA A A CONTRA A CON

MSTAT3 NTD	عع	5000	0000000 69	00000000	70	80000000 80
MSTAT3 1-126 P42227-1 hSTAT3 1-126 P40763-1 hSTAT1 1-126 P42224-1 hSTAT2 1-126 P52630-1 hSTAT4 1-126 Q14765 hSTAT5A 1-126 P42229-1 hSTAT5B 1-126 P4229-1 hSTAT5B 1-126 P42226-1	YAA YAA HAA EAALG. AAS AIDLDNI SVDLDNI FLVGSDJ	SKESHA SKESHA NDVSPA SDDSKA NNETMA PODRAQA POENIKA	TLVPHNL TLVPHNL TIRPHDL THLPPHP TILLONL TOLLEGL TOLLEGL SALLSDT	GETDOO LGETDOO LGETDOO LDOLDDO LDOLDDO LDOLDEO VOELOKK VOELOKK	YSEPLQE YSEPLQE YSEPSLE CGECSQD LGEVSKE AEHQVGE AEHQVGE VGEQGEG	SNVLYOHNIR SNVLYOHNIR NNFLOHNIR ESLLLOHNIR KNLLLIHNLK DGFLLKIKLG STIL
	4	٠	A	** *	AAO A	00000 0

mSTAT3 NTD

mSTAT3 1-126 P42227-1 hSTAT3 1-126 P40763-1 hSTAT1 1-126 P40763-1 hSTAT2 1-126 P52630-1 hSTAT4 1-126 Q14765 hSTAT5A 1-126 P42229-1 hSTAT5B 1-126 P42229-1 hSTAT5B 1-126 P51692 hSTAT6 1-126 P42226-1

α7 0000000000 90	00000000000000000000000000000000000000
RIKQFLOSRYLEK RIKQFLOSRYLEK KSKRNLQDNFQED KFCRDIQP.FSQD RIRKVLOGKFHGN	KEMELARIVARCENES BLLOTATAAQQG. KEMELARIVARCENES BLLOTATAAQQG. DE OMSMILYSCENES BLLOTATAAQQG. DE OMSMILYSCENES RILLOTATAAQQG. DE OCLAEMIER LLES RILLOADRAQ. DE MIVAVUIS CLES RILLAAANN PVOGP.
HYATQLOKTYDRC HYATQLONTYDRC QHISTLESIYQRD	CPLELVRCIRHITYNTORLYREANNC CPMELVRCIRHITYNSORLYREANNGSSPA D <mark>PLKLV</mark> ATFRQIDOGSK <u>KAV</u> MEQFRHLPNPFHW

H-bond, "hand-shake" interface
 Non-polar contact, "hand-shake" interface
 H-bond, "Ni^{2+"} interface
 Non-polar contact, "Ni^{2+"} interface

Variable

Average

Conserved

.

MCB

Molecular and Cellular Biology

Figure 10

80

-10

-a

-6

DNA probe	STAT3	Hill	K _p (nM)
α2M (AGCAG <u>TAACTGGAA</u> AGTCCTTAATC C <u>TTCTGGGAA</u> TTCT)	WT	2.1 ± 0.1	8.2 ± 0.5
	ΔΝΤΟ	1.1 ± 0.1	25.2 ± 0.7
	V77A	1.2 ± 0.2	35.1 ± 8.8
	L78A	1.3 ± 0.1	25.3 ± 2.8
	H58A	2.2 ± 0.1	8.6 ± 0.2
	K140M	1.9 ± 0.1	9.0 ± 0.2
Single strong	WT	1.3 ± 0.1	5.9 ± 0.1
(AGCAG <u>TTCTGGGAA</u> ATCT)	ΔΝΤΟ	1.2 ± 0.1	5.8 ± 0.1
SOCS3	WT	1.7 ± 0.1	8.7±0.2
(ACCCGA <u>TTCCTGGAA</u> CTGCGCGGCC GGCC <u>TTCTTGTAA</u> TGTTT)	ΔΝΤΟ	1.3 ± 0.1	4.5 ± 0.1

.8 Log10 [STAT3]

Accepted Manuscript Posted Online

Molecular and Cellular Biology

Accepted Manuscript Posted Online

Molecular and Cellular Biology

