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Abstract

We introduce a Lagrangian definition for the boundaries of coherent structures in two-dimensional turbulence. The bound-
aries are defined as material lines that are linearly stable or unstable for longer times than any of their neighbors. Such material
lines are responsible for stretching and folding in the mixing of passive tracers. We derive an analytic criterion that can be
used to extract coherent structures with high precision from numerical or experimental data sets. The criterion provides a
rigorous link between the Lagrangian concept of hyperbolicity, the Okubo–Weiss criterion, and vortex boundaries. We apply
the results to simulations of two-dimensional barotropic turbulence. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Coherent structures; Mixing two-dimensional turbulence; Okubo–Weiss criterion; Invariant manifolds

1. Introduction

It is well known that in two-dimensional turbulent
fluid flows coherent structures tend to emerge. While
the existence of such structures is clear from visual
observations of turbulence, their physical description
is not at all obvious. For instance, a coherent struc-
ture can be characterized as a region of concentrated
vorticity that retains its identity for long times (see,
e.g., [42]). Alternatively, coherent structures can be
viewed as energetically dominant recurrent patterns
(see, e.g., [20]). Finally, coherent structures can also
be thought of as sets of fluid particles with distinct sta-
tistical properties (see, e.g., [14]). While emphasizing
different physical aspects of the spatial inhomogene-
ity of turbulence, all these approaches fall into one of
the two basic categories: Eulerian or Lagrangian.
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The Eulerian approach to coherent structures aims
at partitioning the flow based on the instantaneous
distribution of a scalar field, such as the vorticity,
kinetic energy, enstrophy, or the strain. For instance,
coherent vortices can be identified as regions with
vorticity over a small threshold (see [3,7]), regions
bounded by curves of maximal (potential) vorti-
city gradient (see [22,26]), or regions where vor-
ticity dominates strain (see, e.g., [7,9,27,32,48]).
A refinement of the vorticity-based definition, re-
quiring near-axisymmetry for coherent vortices, is
given in [28], while refinements and improvements
of the strain–vorticity ratio based criterion (the
Okubo–Weiss criterion) are given in [6,14,21]. While
all these Eulerian criteria tend to yield qualitatively
similar results, the individual structures they identify
typically differ. Nevertheless, formulated in terms of
level sets and gradients of scalar fields, each such cri-
terion is quantitative and hence can be implemented
systematically.
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The Lagrangian approach to the coherent structures
of two-dimensional turbulence is concerned with pat-
terns emerging from the advection of passive tracers.
In particular, coherent vortices have been studied in
terms of absolute and relative single particle disper-
sion (see, e.g., [4,42]) and passive tracer dynamics has
been statistically related to the presence of Eulerian
coherent structures obtained from the Okubo–Weiss
criterion (see [14]). In addition, particle dynamics in
point vortex models have been compared to those in-
duced by coherent vortices in turbulence (see, e.g.,
[1,2,5,42] or [42] for a review). Finally, finite-time La-
grangian Lyapunov exponents have been employed to
locate dynamically distinguished regions in geophys-
ical flow data (see [37,38]). In most of these studies
coherent structures have been fairly vaguely defined,
and hence their systematic detection has not been pur-
sued.

Lagrangian approaches to turbulence are strongly
influenced by the observation that the dynamical be-
havior of tracers is more dramatically affected by
phase space geometry (such as the distance of tracers
from vortex cores) than by the detailed time history of
the velocity field (see, e.g., [14]). This gives some hope
that geometric structures familiar from simple mod-
els of chaotic advection might have some relevance
in the description of the coherent building blocks
of two-dimensional turbulence. In time-periodic or
quasiperiodic, analytically defined advection models
it is enough to know the velocity field for finite times
to reproduce its recurrent infinite-time history. As a
result, the boundaries of dynamic coherent structures
can be located through stable and unstable manifolds
of appropriate Poincaré maps, and the transport as-
sociated with these structures can be quantified via
lobes (see, e.g., [10,25,34,44–47,50,51] for surveys).
This quantitative power of the Lagrangian approach,
however, is lost for turbulent flows with complicated
spatial and temporal structure. For such flows, one
would need to know the velocity field for infinite times
to define stable and unstable manifolds and lobes. For
this reason, the definition, location, and extraction of
coherent structures has not been clarified in geomet-
ric terms, and the description of tracer dynamics has
remained statistical, based on a primarily Eulerian

view on coherent structures [14]. Yet there is a strong
need for advances in this area. Beyond the unresolved
theoretical issues, much of the available observa-
tional data on geophysical turbulence is provided by
floats, which requires the use of Lagrangian tools in
the identification of structures of interest (see, e.g.,
[35]). In addition, studying the details of turbulent
tracer mixing is of great importance in atmospheric
applications (see, e.g., [36]), industrial flow control
problems (see, e.g., [31]), and many other areas.

In this paper we propose a Lagrangian description
of coherent structures as regions of qualitatively dif-
ferent tracer dynamics. Such regions can be best ap-
proached by following the mixing of passive tracers.
An initially regular passive tracer blob tends to reveal
nearby coherent structures through stretching, thin-
ning, and folding around them. As we argue below,
these dynamical events are due to the presence oflin-
early stableandunstable material linesin the flow. For
lack of regular time dependence, in a turbulent flow
one would need to track material lines for all times in
order to verify their stability or instability in the con-
ventional sense. Since this is not feasible, we intro-
duce a concept offinite-time stabilityand instability
for material lines. This definition is motivated by the
concept of uniform normal hyperbolicity from dynam-
ical systems and is phrased for surfaces spanned by
evolving material lines in space–time. We then define
Lagrangian coherent structure boundaries as material
lines with locally the longest or shortest stability or
instability time. We show a direct connection between
the dynamical boundaries we propose and those one
can (approximately) infer from single particle disper-
sion. In addition, the stable (unstable) material lines
coincide with unstable (stable) manifolds of Poincaré
maps in flows with periodic time dependence, thus
providing a natural link between geometric ideas from
chaotic advection and turbulence.

To locate coherent structure boundaries in given
data sets, we derive an analytic result. According to
Theorem 1, a material line is a coherent structure
boundary if it satisfies the hyperbolicity condition of
the Okubo–Weiss criterion along with another condi-
tion, for locally the longest time in the flow. We use
this result to devise a numerical algorithm that ex-
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tracts coherent structure boundaries from experimen-
tal or numerical data sets. To test the algorithm, we
conduct a Lagrangian study of a velocity field aris-
ing from simulations of quasigeostrophic turbulence.
In this velocity field, we isolate Lagrangian coherent
structure boundaries using our analytic criterion, and
show that they coincide with the boundaries suggested
by relative and absolute dispersion statistics. How-
ever, our dynamical boundaries are exactly defined
and sharp, and are also available in regions, where the
statistically predicted boundaries are missing or ap-
pear too scattered. We also show how coherent struc-
tures of different strength can be located, which gives
a tool to explore the internal structure of background
turbulence.

2. Motivation: turbulent mixing of passive tracers

Our main interest will be the partitioning of a
two-dimensional fluid flow into regions that display
different dynamical behavior. Such dynamical regions
or “Lagrangian” coherent structures can be, e.g., re-
gions of sustained stirring with a given orientation,
or sustained translational motion. In order to isolate
dynamical regions experimentally, one could simply
select a sufficiently dense grid of passive tracers, ad-
vect it under the velocity field, and look at the tracer
distribution at different times. As time evolves, the
snapshots obtained in this fashion provide clues for
t = const. cross-sections of dynamical regions. A ty-
pical result of such an experiment is shown in Fig. 1.
One can make the following observations based on
these pictures:
1. Local stretching in the flow appears to happen

across coherent structure boundaries. In particu-
lar, blobs of particles travel together around such
boundaries and then suddenly depart in opposite
directions, following dynamically different pat-
terns (see Fig. 2a). In other words, parts of the
coherent structure boundaries are responsible for
local instabilities in the flow.

2. Thinning and folding appear to happen along co-
herent structure boundaries. In particular, departing
tracer streaks tend to become thinner and thinner

Fig. 1. Evolution of an initial rectangular set of tracers in
two-dimensional barotropic turbulence (see Section 12 for more
information).

as they travel along the boundaries. Folding then
occurs because of the global curved shape of the
boundaries they follow (see Fig. 2b). Therefore,

Fig. 2. The role of coherent structure boundaries in: (a) stretching,
(b) folding.
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thinning and folding are due to local stabilities in
the flow.
These two observations prompt us to approach co-

herent structures boundaries as material lines that cre-
ate smaller tracer scales through stability or instability.

3. Material lines and surfaces

Consider a two-dimensional velocity field

ẋ = u(x, t) (1)

on some finite-time interval [t−1, t1]. We emphasize
that the velocity field is only known for finite times, a
fact that one has to face in the study of any numerically
or experimentally given turbulent velocity field.

In fluid mechanics the particle trajectoriesx(t) gen-
erated by this velocity fields are called pathlines and
are typically visualized as curves on thex plane. These
curves will in general be self-intersecting for an un-
steady velocity field. A curve of initial conditions,Γ0,

on thex plane can be advected by the velocity field
in time, in which case later images ofΓ0 at time t ,
denoted byΓt , are calledmaterial lines.

We would like to define a framework in which the
stability or instability of a material line can be stud-
ied on the finite-time interval [t−1, t1]. To be able to
use stability concepts from dynamical systems theory,
we shall mostly think of the fluid particle motions
x(t; t0, x0) induced by the velocity field as trajectories
in the space of the variables(x, t), which start from
the pointx0 at time t0 ∈ [t−1, t1]. Trajectories in this
extended phase spacedo not intersect and hence the
different qualitative behaviors of different sets of ini-
tial conditions are easier to visualize. The map

Fτt0 : x0 7→ x(t0 + τ ; t0, x0)

relates initial conditions att0 to their later position at
time t0+τ . For simplicity, we shall refer to this map as
the flow map. 1 There is an associatedextended flow

1 Note, however, that this map is not a flow in the mathematical
sense of the word.

Fig. 3. The evolving material curveΓt spans out a material surface
M in the extended phase space.

mapdefined on the extended phase space as

F τ :

(
x0

t0

)
7→

(
x(t0 + τ ; t0, x0)

t0 + τ

)
.

A deforming material lineΓt spans a two-dimensional
surfaceM in the(x, t) space, which we call amaterial
surface(see Fig. 3). The dynamical stability of the
material lineΓt can then be studied in terms of the
stability ofM in the extended phase space.

In order to describe the stability ofM, we shall
need to linearize the extended flow mapFτ along
M. First, recall that the linearized flow map along a
particle pathx(t0 + τ ; t0, x0) is given by∇Fτt0(x0),

which is called the deformation gradient in contin-
uum mechanics. It describes the evolution of infinites-
imal perturbations along the trajectory starting from
x0: A small disturbancex0 + se0 of the initial condi-
tion will be carried by the velocity field to the point
x(t0 + τ ; t0, x0) + s∇Fτt0(x0)e0 + O(s2). Using the
deformation gradient, one can compute the linearized
extended flow mapDF τ , given by the 3× 3 matrix

DF τ =
( ∇Fτt0 ∂t0Fτt0

O 1

)
.

Here ∂t0Fτt0 is a two-dimensional column vector and
O is a two-dimensional row vector of zeros. We note
that∂t0Fτt0 = u(x(t0 + τ), t0 + τ)− u(x0, t0).

4. Stable and unstable material surfaces

We are interested in locating material lines that are
responsible for creating the type of local instability
in tracer mixing that we described in Section 2. This
instability manifests itself in directions normal to a



356 G. Haller, G. Yuan / Physica D 147 (2000) 352–370

material lineΓt , and for this reason we shall not be
concerned with instabilities in the direction tangential
to material lines. Generically, such a “normal” instabi-
lity will be captured by appropriate linearization along
the corresponding material surfaceM. In view of this,
we want to callM unstable if there is a connected time
interval Iu = [t−, t+] ⊂ [t−1, t1], such that during
Iu all nearby fluid trajectories separate fromM at an
exponential rate.

While characterizing the instability ofM for infinite
times is well understood in dynamical systems (see,
e.g., [15]), one has to be careful in phrasing a reason-
able concept of instability on a finite-time interval. If
the distance of a fluid trajectoryp(t) = (x(t), t) from
M at t− andt+ is such that

dist(p(t−),M) < dist(p(t+),M),

then one can always find an exponentλu > 0 such that

dist(p(t+),M) ≥ dist(p(t−),M)eλu(t+−t−). (2)

However, this relation by itself says nothing about the
stability type ofM on the intervalIu: It might have
been stable for the most part, or might have been
changing its stability, as shown in Fig. 4. Therefore,
to capture a consistent unstable behavior forM on the
interval Iu, it is not enough to require a condition of
the type (2) to hold for all nearby initial conditions.
Rather, to obtain a reasonable concept of finite-time
instability, one should require exponential separation
fromM on arbitrarily short time intervalswithin the
instability intervalIu. In particular, we callM anun-
stable material surfaceon the time intervalIu if there
is a positive exponentλu such that for any close enough

Fig. 4. Increased distance from a material surface att+ does not
imply sustained linear instability on the time interval [t−, t+].

Fig. 5. The geometry of the linear instability condition for a
material surface.

(i.e., “infinitesimally close”) initial conditionp(τ ) =
(x(τ ), τ ) and for any small time steph > 0 we have

dist(p(τ + h),M) ≥ dist(p(τ ),M)eλuh, (3)

as long asτ andτ + h are both taken fromIu.
For (3) to hold, one simply has to require that the

normal components of vectors initially orthogonal to
M in the extended phase space should grow exponen-
tially, obeying a uniform lower bound for the expo-
nent. In particular, ifN (p, t) is a unit normal toM at
the point(p, t) in the extended phase space, thenM is
an unstable material surface overIu if for all τ, τ+h ∈
Iu and for all initial conditions(x0, τ ) ∈ M, we have

|N (x(τ+h), τ+h) ·DFh(x0)N (x0, τ )| ≥ eλuh, (4)

wherex(τ + h) is the trajectory at timeτ + h that
started fromx0 at timeτ , and “·” refers to the scalar
product of the vectors (see Fig. 5).

As shown in Fig. 6, individual fluid trajectories on
M enter the unstable region ofM at some time within
the intervalIu. If, in addition, the flow is incompress-
ible, trajectories must converge to each other onM

Fig. 6. An unstable material surfaceM over the time interval
Iu = [t−, t+].
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within the domain of linear instability in order to en-
sure area preservation for the linearized flow map∇Fτt0
(see Appendix A).

We should note here that a material surface with a
positive finite-time Lyapunov exponent on any subin-
terval of Iu is in generalnot an unstable material
surface. The simplest example is given by the steady
linear velocity fieldẋ1 = −x1, ẋ2 = x2. The material
surfaceM = {x1 = 0} is not an unstable material
surface in the sense of (4), as it attracts trajectories
exponentially. Yet, for any trajectory inM, one of the
finite-time Lyapunov exponents is+1.

Recalling the third observation of Section 2, we also
need to define stable material surfaces. We propose
that these are the surfaces responsible for the quick
thinning of fluid streaks after their departure from an
unstable material surface. They also tend to guide the
departing streaks through global folding. We therefore
define astable material surfaceN as a smooth material
surface that is unstable in backward time, in the sense
of (4), with instability intervalIs.

An unstable material linewith instability intervalIu
is just a curveΓt which generates an unstable material
surface in the extended phase space with instability
intervalIu. A similar definition can be used to defined
stable material lines.

We shall refer to unstable and stable material lines
(surfaces) ashyperbolic material lines(surfaces),
motivated by the terminology used in the theory of
infinite-time invariant manifolds. Accordingly, the
corresponding intervalsIu and Is will be referred to
ashyperbolicity intervals.

5. Local nonuniqueness of hyperbolic material
lines

Assume now that a material surfaceM is unstable
on the intervalIu. By the continuous dependence of
the right-hand side of (4) on all its arguments, close
enough material surfaces will also be unstable for a
while. They, however, have to bevery close toM in
order to be unstable in the sense of (4) on the whole
time intervalIu. The reason is that the instability of
M pushes them away at an exponential rate from the

neighborhood in which the continuity argument holds.
It can be deduced from the finite-time invariant man-
ifold results of Haller and Poje [16] that any nearby
unstable material surfaceM ′ with instability interval
Iu must obey the distance estimate

dist
t∈Iu

(M,M ′) < C0 e−λu(t+−t−),

whereC0 can be selected fixed as long ast1 − t0

and the fluid domain of interest is bounded. This es-
timate indicates that, while unstable material surfaces
areneverunique on a finite-time interval [t0, t1], the
degree of their nonuniqueness is exponentially small
with respect to the product of the instability exponent
λu and the length of the instability intervalIu. 2 As
a result,material lines that are hyperbolic for long
enough time intervals will appear to be locally unique
up to numerically unresolvable errors. This gives a
strong motivation to use stable and unstable mate-
rial surfaces in the definition of coherent structure
boundaries.

6. Definition of coherent structure boundaries

For any initial conditionx0 at time t0 ∈ [t−1, t1],
consider the maximal open set,Iu(x0), within [t0, t1]
on which the instability condition (4) holds. Note that
Iu(x0) is a set of connected open intervals, with each
of its connected components satisfying (4) with an
appropriate exponentλu. We define the (total linear)
instability timeTu(x0, t0) associated withx0 over the
time interval [t0, t1] as

Tu(x0, t0) = 1

t1 − t0

∫
Iu(x0)

dt. (5)

Similarly, Is(x0) will denote the maximal open set in
[t0, t−1] on which (4) is satisfied in backward time.

2 The continuity argument we used for the nonuniqueness ofM

breaks down ifIu is an unbounded interval. For instance, periodic
velocity fields of the form (1) can be considered as given on
infinite time intervals. Any bounded piece of an unstable material
surface with instability intervalIu = [−∞,+∞] is then a normally
hyperbolic invariant manifold, which is locally unique by classic
results from dynamical systems theory (see, e.g., [15]).
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Fig. 7. Coherent structure boundaries: (a) maximizingTu, (b)
minimizing Tu.

Then the (total linear)stability timeTs(x0, t0) associ-
ated withx0 over the backward time interval [t0, t−1]
is

Ts(x0, t0) = 1

t0 − t−1

∫
Is(x0)

dt. (6)

We call Tu(x0, t0) and Ts(x0, t0) the hyperbolicity
timesassociated withx0 at t0.

Based on our earlier discussion, we propose the
following definition: At t = t0, coherent structure
boundaries are given by stable and unstable material
lines along whichTs or Tu attains local extrema. For
instance,Tu is said to be locally maximal along a
material line if, near this line, we do not find initial
conditions with longer instability times.

Material lines locally maximizingTu keep pushing
away particles on both sides for locally the longest
times, and hence should indeed be considered as sepa-
rating lines between two dynamically different regions
(see Fig. 7a). For the same reason, material lines max-
imizing Ts become distinguished in backward time,
giving rise to folding in forward time (see Section 2).

For flows near a wall some coherent structure
boundaries might be connected to the wall, containing
particles that approach the wall in forward time, at
least on the time interval of interest. Then, in case of a
no-slip boundary condition at the wall, the correspond-
ing dynamical boundary cannot be linearly unstable in
its normal direction due to the degeneracy of the flow
at the wall (see Fig. 7b). Generically, initial condi-
tions on the coherent structure boundary will admit a
shorterTu value than nearby initial conditions, which
will leave a vicinity of the wall later and accumulate
more instability time. Therefore, in the generic case,

coherent structure boundaries containing separation
or reattachment points (with no-slip boundary condi-
tions) can be defined as material lines along whichTu

or Ts is locally minimal. At larger distances from the
wall, our earlier discussion becomes relevant and the
coherent structure boundaries become local maximiz-
ers of theTu or Ts field. This will be described in a
companion paper where our methods are applied to a
two-dimensional experimental data set (see [11]).

Depending on the maximal length of the available
velocity data, the boundaries obtained from the above
definition may be thinner or thicker. Once the coherent
structure boundaries are found att = t0, later or ear-
lier boundaries can be found by advecting them in for-
ward or backward time. Alternatively, one can change
the initial time t0 in (5) or (6) to obtain the structure
boundaries att0.

We leave it to the reader to verify that for velocity
fields given on [t−1, t1] = [−∞,∞], the t = t0 slices
of the usual stable and unstable manifolds known from
dynamical systems are unstable and stable material
curves, respectively, in the sense of our definition. For
instance, for simple time periodic velocity-fields of the
form (1), the coherent structure boundaries we defined
above coincide with stable and unstable manifolds of
hyperbolic fixed points of the corresponding Poincar-
émap. However, our approach to these material lines
is motivated by their effects on generic tracer patches,
rather than by their internal asymptotic dynamics. In
particular, from the point of view of mixing, the ef-
fect of a classical stable manifold on a tracer patch is
instability, while the effect of an unstable manifold is
stability.

If there are fluid particles that actually cross a co-
herent structure boundary, then the boundary will not
be a closed curve. For instance, a coherent structure
may have a sizable “gate” in it, accounting for the fact
that fluid particles are continuously entrained into it.
Such structures are, e.g., growing mesoscale eddies in
geophysical flows (see, e.g., [39]).

In this paper we shall only deal with open turbu-
lent flows, and hence coherent structure boundaries
will always be localmaximizersof theTu or Ts field.
However, minimizing boundaries are equally impor-
tant in several physical applications involving walls.
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For instance, Cohen et al. [11] use these techniques to
study experimental data for a turbulent flow around a
backward facing step.

7. Dispersion statistics and structure boundaries

Our definition of Lagrangian coherent structure
boundaries as stable and unstable material lines with
locally maximal hyperbolicity times is primarily
motivated by observations of the kinematics of tur-
bulent mixing. At the same time, coherent structures
in two-dimensional turbulence are often approached
from a statistical point of view (see, e.g., [42]). The
two main statistical quantities used in their description
are the absolute and relative dispersion. The absolute
dispersion (or single particle dispersion) is defined as
the mean square displacement of individual particles,
i.e.,

A2(t; t0)= 〈|xi (t)− xi (t0)|2〉

= 1

N

N∑
i=1

|xi (t)− xi (t0)|2

with xi (t), . . . , xN(t) denoting an ensemble of parti-
cles. In principle, the ensemble average〈 〉 should be
taken at the same spatial position with respect to dif-
ferent realizations of the velocity field. However, in
practice one takes a grid of initial conditions and ad-
vects it by a given velocity field. Relative dispersion is
the mean square displacement of particles with nearby
initial conditions:

D2(t; t0, d0) = 1

N

N∑
i=1

|xi (t)− x−i (t)|2,

wherexi (t) andx−i (t) are pairs of particles that are
initially close, i.e.,|xi (t0)− x−i (t0)| = d0.

While we shall use absolute dispersion to explore
the coherent structure boundaries we defined, relative
dispersion has a more direct relationship with stable
and unstable material lines. Note that if a particle pair
is initially located close to an unstable material line
Γt0, and their initial distanced0 is small enough, then
|xi (t) − x−i (t)| will experience exponential growth

over the instability interval ofΓt . If Γt is part of a co-
herent structure boundary, then, by definition, pairs of
particles further away fromΓt may only experience
exponential separation on shorter time scales. By con-
tinuity, the exponents governing these short-term ex-
ponential separations must be close to the exponentλu

associated withΓt . For this reason, the time-dependent
scalar field

d2(t, xi (t0)) = |xi (t)− x−i (t)|2 (7)

should have local maxima along initial conditions
xi (t0) located onΓt0. One therefore expects the rela-
tive dispersion, which is just a discrete average of the
d2-field, to be strongly influenced by the presence of
strongly hyperbolic material lines. We shall demon-
strate this fact numerically in Section 12. While less
obviously related to strongly hyperbolic material
lines, the absolute dispersion “density” field

a2(t, xi (t0)) = |xi (t)− xi (t0)|2 (8)

is also expected to indicate the presence of Lagrangian
coherent structure boundaries due to their global in-
fluence on particle mixing. We will also observe this
clearly in the numerical simulations of barotropic tur-
bulence presented in Section 12.

8. Detectability of Lagrangian coherent structure
boundaries

While condition (4) can be adopted as an exact
mathematical definition for Lagrangian coherent struc-
ture boundaries, it would be rather difficult to verify
in practice. The computation of the linearized flow
mapDFhτ (x0) for all possibleτ and h values and
for all possible choices of material lines is clearly not
feasible.

One might obtain clues about the location of
strongly stable material lines fromt = const. stream-
line pictures that show instantaneous saddle-type
stagnation points with unstable manifolds. If the
velocity field varies slowly enough in time, such
an unstable manifold in the velocity contour is ex-
pected to be close to stable material surfaces. Al-
though phrased differently, this was the underlying
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assumption in several recent studies that were aimed
at locating unstable manifolds in geophysical flows
(see [12,16,24,30,43]). In these studies pieces of
instantaneously stable streamlines were advected
(“straddled”) and their convergence to an underlying
unstable manifold in the flow was assumed. Haller
and Poje [16] gave analytic conditions under which
the existence of a (nonunique) nearby finite-time
unstable manifold can indeed be inferred from instan-
taneous stagnation points. However, they also showed
that if these conditions are violated, straddling may
lead to “phoney” unstable manifolds.

Poje et al. [40] explored the relevance of finite-time
stable and unstable manifolds obtained from straddling
to patchiness plots, a statistical edge detection tool
suggested by Mezić and Wiggins [29]. They found that
on intermediate time scales, plots of thex or y com-
ponent of average Lagrangian velocities show a visi-
ble relationship with such velocity patches. On longer
time scales, however, this relationship is necessarily
lost.

Recently, Bowman [8] suggested a “finite strain
map” technique for locating unstable manifolds with-
out relying on instantaneous stagnation points. In the
context of our current discussion, the finite strain map
technique can be viewed as a global search for un-
stable material lines. In Bowman’s work these curves
are sought as curves of initial conditions for which
the total linear separation of nearby tracers is maxi-
mal. This is equivalent to searching for local maxima
in the relative dispersion density fieldd2 defined in
(7). For this reason, finite strain maps are highly rele-
vant in the detection of Lagrangian coherent structure
boundaries. In fact, the more recent work of von
Hardenberg et al. [19] on mixing in a baroclinic at-
mosphere model clearly shows that such boundaries
are indeed local maximizers of the relative dispersion
field. In practice, however, two limitations of this
approach arise. First, local maxima in thed2(t, x)
field are necessary but not sufficient indicators of the
existence of finite-time hyperbolic material lines. For
instance, tangentially unstable material lines will also
show up as local maxima. As a result, a horizontal
nonlinear shear flow can produce sharp local max-
ima for d2 without admitting any stable or unstable

material surfaces in the sense of (4). This fact makes
it difficult to evaluate the results obtained from fi-
nite strain maps. Second, as time evolves, regions of
high strain will produce large values ford2, which
will completely suppress many of its local maxima.
In particular, important material lines may simply
not show up, become fuzzy, or soon disappear from
the time-dependent contour plots ofd2 (see [17] for
examples).

All this suggests a need for an algorithm that re-
liably extracts coherent structure boundaries from
numerical or experimental velocity data. Reasonable
requirements for such an algorithm include a solid
mathematical foundation, increased accuracy (conver-
gence) as the available time interval is increased, and
Galilean invariance (no reliance on stagnation points).

9. An analytic criterion for coherent structure
boundaries

In this section we present an analytic criterion that
can be used to find material lines satisfying the insta-
bility requirement (4). This will enable us to locate
coherent structure boundaries at any fixed timet by
plotting a hyperbolicity time distribution att and
looking for curves along which hyperbolicity times
are locally maximal.

The criterion we give below is a sufficient condition
for the existence of stable and unstable material sur-
faces, and is based on recent advances in dynamical
systems theory. In particular, our criterion will build
on some uniform finite-time hyperbolicity results for
two-dimensional vector fields from Haller [17]. For
simplicity, throughout this section we assume that

∇ · u = 0, (9)

i.e., the underlying fluid is incompressible. We briefly
discuss the case of compressible flows after the main
result.

Assume that a fluid particle pathx(t) generated by
the velocity field (1) is known. The Jacobian of the ve-
locity field alongx(t) is given by the time-dependent
matrix ∇u(x(t), t), where∇ denotes differentiation
with respect tox. We assume that on a closed time
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interval Iu ⊂ [t0, t1], the relation det∇u(x(t), t) < 0
holds, i.e.,∇u(x(t), t) has real eigenvalues−λ(t) <
0 < λ(t) (here we used (9)). We shall use the
quantity

λmin = min
t∈Iu

λ(t). (10)

The eigenvectorse1(t) ande2(t) correspond to−λ(t)
andλ(t), selected in a way so that they vary smoothly
in t . We also assume that they are normalized so
that |ek(t)| = 1. We denote the angle betweene1(t)

and e2(t) by κ(t) and note that sinκ(t) 6= 0. For
matricesA ∈ R2×2, we shall use the norm|A| =
(
∑2
i,j=1|Aij |2)1/2. In this notation, the matrix of

eigenvectorsT(t) = [e1(t),e2(t)] satisfies|T| = √
2

and |detT| = | sinκ(t)|. We shall also need the
quantities

α = min
t∈Iu

|detT|, β = max
t∈Iu]

|Ṫ(t)|, (11)

which are upper bounds on the norm ofT−1/
√

2
and Ṫ, respectively. Recall thatα is never zero by
definition.

Using these quantities we have the following result.

Theorem 1. Suppose that for a fluid trajectoryx(t)
of the velocity field(1) we have

det∇u(x(t), t) < 0, λmin > (2 +
√

2)
β

α
. (12)

Then x(t) is contained in a material lineΓt which
is unstable on the time intervalIu. Furthermore, the
instability exponent in(4) can be estimated as

λu = λmin −O
(
β

α

)
. (13)

Proof. See Appendix A. �

Several important remarks are in order:
1. Physically, Theorem 1 requires that typical La-

grangian velocities near an unstable material line
should be larger than the deformation rate of the
curve itself. This is a very natural requirement for a
coherent structure boundary, since randomly picked
material lines in a turbulent flow field will deform
at a speed dictated by individual particle velocities.

2. The criterion (12) isGalilean invariant, i.e., it will
be satisfied for the same material line even after
a change of coordinatesx′ = Qx + v0t , whereQ
is a proper orthogonal, 2× 2 matrix andv0 is a
constant velocity. In fact, our results are invariant
under the more general set of transformationsx′ =
Q(t)x+v(t), wherev(t) is an arbitrary function of
time and the matrixQ is not varying faster in time
thanO(β/α).

3. We stress that despite its simple appearance, the
criterion (12) isnonlinear in nature. This can be
seen by noting, that computing the quantityβ one
needs to evaluate second derivatives of the velo-
city field. Furthermore, (12) needs to be com-
puted along fluid trajectories that satisfy the full
nonlinear Eq. (1).

4. Stable material linessatisfy the same criterion. In
order to find them numerically, one has to verify
(12) in backward time.

5. A result analogous to Theorem 1 can be obtained
for compressible flows by substituting the con-
ditions (A.1)–(A.4) of Appendix A for (12). For
weakly incompressible flows, however, (12) and
(A.1)–(A.4) seem to produce indistinguishable
results.

6. Theorem 1 provides a sufficient condition for
the existence of hyperbolic material lines. If one
is only interested in locating coherent structures
whose “bulk” deformation rate is slower than
typical nearby Lagrangian particle speeds, the
conditions of the theorem also become necessary
(see [17]).

10. Vortex boundaries and the Okubo–Weiss
criterion

The first condition of Theorem 1 provides a re-
lationship between the Lagrangian coherent struc-
ture boundaries we defined and the well-known
Okubo–Weiss criterionfor a rough partition of
two-dimensional turbulence (see, e.g., [27,33,48,49]).
In particular, letting

Q(x, t) = s2(x, t)− ω2(x, t),
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where

ω2 = (∂xuy − ∂yux)
2,

s2 = (∂xux − ∂yuy)
2 + (∂yux + ∂xuy)

2

are the squared vorticity and strain, the regions instan-
taneously dominated by strain satisfy

Q(x, t) > 0 ⇔ det∇u(x, t) < 0.

According to the Okubo–Weiss principle, these re-
gions are considered hyperbolic. Since the material
lines satisfying (12) turn out to be uniformly hyper-
bolic over the intervalIu (see Appendix A), our re-
sult can be considered as a mathematically rigorous
connection between instantaneous hyperbolic regions
obtained from the Okubo–Weiss partition and actual
hyperbolic particle behavior. It is consistent with the
conclusion of Basdevant and Philipovitch [6], who
pointed out that the Okubo–Weiss criterion may only
identify elliptic and hyperbolic regions correctly near
the cores of vortices and hyperbolic stagnation points.
Furthermore, at least for hyperbolic regions, it extends
the second-order correction to the Okubo–Weiss cri-
terion by Hua and Klein [21] to an exact, “all-order”
correction.

At the same time, Theorem 1 underlines the fact that
vortex boundaries shouldnot be defined as sets satis-
fying Q(x, t) = 0. While this criterion was used as a
“working definition” in several studies, most authors
have noted its shortcomings (see [42] for an overview).
Theorem 1 shows that the most important parts of vor-
tex boundaries, i.e., the parts that are linearly stable
or unstable, actually lie in regions whereQ(x, t) > 0.
The remaining parts of the boundaries might also re-
main inQ(x, t) > 0 regions, or might also cross to
Q(x, t) < 0 regions. In our simulations described in
Section 12, they tended to remain in theQ(x, t) > 0
region.

11. Detecting coherent structures numerically

The statement of Theorem 1 leads to the following
procedure for the extraction of Lagrangian coherent
structure boundaries from the velocity field (1):

1. Consider a grid of initial conditions att = t0 ∈
[t−1, t1].

2. Integrate each initial conditionx0 forward in time
up to t1, and determine the total instability time
Tu(x0, t0) defined in (5).

3. Plot the scalar fieldTu(x0, t0) and note that the
t = t0 slice of any coherent structure boundary
consisting of an unstable material line (in the sense
of (4)) will appear as a curve or thin strip which
locally maximizes theTu(x0, t0) field (cf. Section
6).

4. Similarly, calculatingTs(x0, t0), defined in (5),
in backward time on the time interval [t0, t−1]
will produce t = t0 sections of coherent struc-
ture boundaries that consist of stable material
lines.

5. Allowing for arbitrary positiveλmin values in
the above numerical algorithm, one searches for
any possible coherent structure boundary. Select-
ing a positive threshold forλmin will serve as
a filter; only coherent structure boundaries with
approximate stability/instability exponents above
this threshold will be located (cf. formula (13)).
This enables one to isolate structures with a more
prominent role in tracer mixing.
The curves (or thin strips) obtained from steps 3

and 4 are the finest approximations for Lagrangian
coherent structure boundaries, given the length of the
available velocity data in time. Since a separation
of Eulerian and Lagrangian time scales is a frequent
(if not essential) property of most robust coherent
structures in turbulence, by Remark 6 of Section 9,
the algorithm we propose above will locate all robust
enough structures in a given flow field.

For the above calculations, the Jacobian∇u(x(t), t)
along the trajectoryx(t) needs to be interpolated.
This, along with the numerical imprecisions aris-
ing from obtainingx(t), will introduce noise into
the numerical procedure described above. In our ex-
periments (to be described below), the results were
robust and seemed independent of the numerical
differentiation scheme used. At the same time, spa-
tially more complex flows will require a more care-
ful numerical implementation of the calculation of
∇u(x(t), t).
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12. Numerical experiments on barotropic
turbulence

12.1. The numerical model

In order to test the algorithm we proposed in
Section 11, we consider the quasigeostrophic vorticity
equation

∂q

∂t
+ [ψ, q] = −ν4∇4q (14)

with hyperviscosity ν4 = 5 × 10−7. The quasi-
geostrophic potential vorticityq is defined asq =
∇2ψ − γ 2ψ , with ψ(x, y, t) denoting the nondi-
mensionalized free surface (which acts as a stream
function),∇2 = ∂2

x + ∂2
y , andγ is the scaled inverse

of the Rossby deformation radius. The above defini-
tion for q assumes flat bottom topography. Selecting

Fig. 8. Potential vorticity contours showing the evolution of vortices.

a finite Rossby deformation radius withγ = 10, we
aim to produce relatively robust coherent structures,
following the approach of Provenzale et al. [41].

Eq. (14) is solved on the square domain(0,2π)2,
with 128× 128 resolution and with a random Gaus-
sian distribution of vorticity, using the pseudo-spectral
code employed in [41]. We started our analysis after
robust coherent structures emerged in the flow. Rep-
resentative contours of the evolution of the studiedq

distribution are shown in Fig. 8. The 128× 128 ve-
locity field resolution can be considered moderately
dense, and was selected to obtain velocity fields on
relatively long times with reasonable precision. Snap-
shots of the evolution of a 256×256 set of initial trac-
ers were shown in Fig. 1, obtained from a cubic spline
interpolation of the velocity field in space and time.
For particle tracking, we used the code VFTOOL (see
[30]).
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Fig. 9. The magnitude of the potential vorticity gradient att0 = 50.
Local maxima are usually considered as instantaneous vortex
boundaries in an Eulerian sense.

12.2. Eulerian coherent structure description

Fig. 9 shows the field|∇q(x,50)|, whose maxi-
ma are commonly considered in the literature as in-
stantaneous vortex boundaries in the Eulerian sense
(cf. Section 1 for references). The corresponding
Okubo–Weiss partition (cf. Section 10) to instanta-
neously hyperbolic and elliptic regions is shown for
the same time slice in Fig. 10.

Both Eulerian plots give an instantaneous partition
of the physical space and suggest elliptic patches of

Fig. 10. The Okubo–Weiss partition of the velocity field into
hyperbolic (red) and elliptic (blue) regions att = 50.

Fig. 11. The instability time fieldTu(x0,50). The maximizing
curves are repelling Lagrangian coherent structure boundaries
(finite-time stable manifolds).

initial conditions that are likely to preserve their cohe-
rence for longer times. At the same time, these plots
do not give direct clues about mixing and transport in
the flow. In particular, they do not reveal the structures
responsible for stretching and folding, or the global ge-
ometry of mixing within the hyperbolic “background”
turbulence.

Fig. 12. The stability time fieldTs(x0,50). The maximizing curves
are attracting Lagrangian coherent structure boundaries (finite-time
unstable manifolds).
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12.3. Lagrangian coherent structures

In order to obtain more insight into the geometry of
mixing in the numerical model (14), we implemented
the results of Theorem 1 in a numerical algorithm fol-
lowing the steps described in Section 11. The Jaco-
bian of the velocity field along particle trajectories is
obtained from cubic spatial interpolation and centered
finite differences. In our calculations we only used the
velocity field at increments of 10h, whereh = 0.1 is
the time step used in the turbulence solver. We chose
not to use all the available velocity data in order to
show the robustness of our methods and reduce com-
putation time. The sharpness of the results below gives
a strong argument for the applicability of this type of
analysis to moderately resolved experimental data sets
(see also [11] for another example).

Fig. 11 shows the results of our Lagrangian anal-
ysis, the total instability time fieldTu(x0, t0), with
the calculation performed on the interval [t0, t1] =
[50,99]. Fig. 12 shows the fieldTs(x0, t0) calculated
on [t0, t−1] = [50,10]. It is worth noting thatTu(x0, t)

andTs(x0, t) both coincide with the Okubo–Weiss plot
of Fig. 10 in the limit t → 50. Practically speaking,
the stability and instability-time plots emerge from the
Okubo–Weiss plot through a gradual loss of high (red)
values to lower (blue) values. Initial conditions that are
truly finite-time hyperbolic for long times stay high-
lighted, while the ones that were only instantaneously
hyperbolic in the Okubo–Weiss sense fade away. The
ones that stay truly hyperbolic for locally the longest
time then emerge as coherent structure boundaries.

The details provided by Figs. 11 and 12 are strik-
ing and reveal unexpected global connections between
structures in the background turbulence. The coherent
structure boundaries obtained in this fashion are dy-
namically exact, i.e., reflect the true organizing centers
of finite-time Lagrangian mixing.

To extract the structure boundaries themselves, in
Fig. 13 we highlighted all important attracting mate-
rial lines att0 = 50 by taking the gradient of the field
Ts(x0,50). 3 The material lines obtained in this fash-

3 The gradient picture renders the Lagrangian structure boundaries
quite efficiently since they all correspond to cusp-type maxima in
the hyperbolicity time field.

ion are the underlying cause for folding in the flow:
In accordance with our discussion in Section 2, a fluid
blob will fold at some point at an exponential rate if
it intersects one of the curves in Fig. 13 att0 = 50.
This figure underlines the complexity of turbulent mix-
ing compared to simple models of chaotic advection,
where typically one or two such curves (“infinite-time”
unstable manifolds) are present.

While our primary concern has been the isolation
of Lagrangian coherent structure boundaries, we have
also obtained sharp results forvortex edges. Based on
our analysis, vortex edges can be defined as bound-
aries of regions of particles that stay away from hy-
perbolic material surfaces on the whole time interval
[t0, t1]. A similar definition can be used to isolate “el-
liptic patches” in background turbulence. Both vor-
tex edges and the boundaries of small elliptic (La-
grangian) patches are clearly visible as closed curves
in Fig. 13. They offer a sharper vortex edge defi-
nition than that obtained from the plot of|∇q| in
Fig. 9.

A final remark about Fig. 13 is that ast → ∞, the
distinguished material lines gradually fill up the whole
background region outside coherent vortices, since the
hyperbolicity times accrued by all initial conditions
in this region tend to infinity. However, the focus of
this paper is finite-time mixing, in which case one
generically obtains local maximizers in hyperbolicity
time plots. The reason is that most particles will vi-
olate the second condition in (12) from time to time,
even if they satisfy the first condition for all times
considered.

In the above calculations all unstable material lines
were detected (withλmin > 0), including those in
the background turbulent field. As we remarked ear-
lier, it also makes sense to compute hyperbolicity
times only for tracers yieldingλmin-values over a
given threshold. In this fashion, one can gradually
filter out material surfaces from the background tur-
bulent field. In Fig. 14 we selected the hyperbolicity
thresholdλmin = 1.5, and only considered initial
conditions which satisfiedλ(t) > λmin. This filter-
ing procedure gives a quantitative tool to compare
the Lagrangian “strength” of coexisting coherent
structures.
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Fig. 13. Attracting Lagrangian coherent structure boundaries
(finite-time unstable manifolds) att0 = 50. These material lines
are responsible for the folding of fluid blobs.

12.4. Comparison with Lagrangian statistics

To demonstrate the relevance of the Lagrangian
structure boundaries to absolute and relative disper-
sion statistics, we chose to compute the forward-time
a2 field and the backward-timed2 field (see Section
7 for notation and definitions). Thea2 field, shown in
Fig. 15, is to be compared with the forward-time hy-
perbolicity time picture in Fig. 11, while thed2 field
of Fig. 16 is to be compared with the backward-time
coherent structure boundary image in Fig. 13. When

Fig. 14. The distribution of the instability time fieldTu(x0,50) for
the hyperbolicity thresholdλmin = 1.5.

Fig. 15. The absolute dispersion density fielda2(t, x0) at t = 99.

compared, Figs. 15 and 16 show a definite correla-
tion between dynamically and statistically defined La-
grangian coherent structure boundaries, in agreement
with our discussion in Section 7. However, in contrast
with the somewhat fuzzy curves obtained from rela-
tive dispersion statistics, our finite-time stability anal-
ysis yields sharp vortex boundaries whose dynamical
properties are exactly known. As seen in Fig. 13, it
also locates many important material lines that remain
hidden to dispersion statistics calculation due to their
milder rate of attraction. It is often these structures
that have global connections with other regions of the

Fig. 16. The relative dispersion density fieldd2(t, x0) at t = 10.
(We actually plot

√
d2(t, x0) for better visibility of the structures.)
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physical space, and hence their detection is essential
for understanding global mixing.

Also notable is the inability of relative dispersion to
highlight vortex edges. Instead of locating the distinct
closed edges obtained in Fig. 13 and Fig. 16 actually
suggests the incorrect conclusion that the largest co-
herent structure boundaries invariably spiral towards
the cores of elliptic regions. This fact would contra-
dict the well-known impermeability of coherent vor-
tices in two-dimensional turbulence (see, e.g., [14]),
and is also inconsistent with our earlier plot of|∇q|.
The spirals are, in fact, due to a shortcoming of statis-
tical methods that we pointed out in Section 8: They
are unable to distinguish between tangential and nor-
mal instabilities of material lines. As a result, they
highlight shear instabilities within vortex cores as con-
tinuations of normally unstable material lines outside
vortex cores.

13. Conclusions

In this paper we proposed a dynamical definition
for coherent structure boundaries. For open flows, the
boundaries are defined by material lines that are lin-
early stable or unstable in normal directions for longer
times than their neighbors. For flows with no-slip
boundary conditions, coherent structure boundaries
attached to the wall (near separation or reattachment
points) are defined by material lines with locally
the shortest linear stability or instability times. We
gave an analytic criterion that can be used to extract
Lagrangian coherent structure boundaries with high
precision. Our criterion can be viewed as a mathe-
matically exact version of the Okubo–Weiss criterion
for the detection of hyperbolic particle behavior. It is
also Galilean invariant, and hence does not require
locating instantaneous stagnation points in the flow.

To test our concepts and results, we performed
numerical simulations on a velocity field arising in
two-dimensional barotropic turbulence. We showed
that the structure boundaries we defined coincide with
those inferred from dispersion statistics. However,
our computations give sharp boundaries, whose dy-
namical properties are exactly known by definition. In
addition, our techniques reveal mesoscale structures

that appear to remain completely hidden to statistical
methods. The numerical algorithm we developed can
also be used to isolate vortex cores and regions with
different hyperbolicity levels within the background
turbulence.

It appears that the framework we developed here
enables one to obtain a variational principle for co-
herent structure boundaries. In particular, one can
look for coherent structure boundaries as curves that
locally maximize the hyperbolicity time distribution
Tu(x0) defined in Section 11. A similar problem, the
extraction of linear structures from visual data, arises
in computer vision and is solved through an appro-
priate variational formulation. The available results
indicate that an automated extraction of coherent
structure boundaries from the hyperbolicity time dis-
tribution field is possible (see [13]). The investigation
of this issue is a subject of current research.

While the primary motivation of this paper was
physical, we feel that our definition of coherent
structure boundaries also opens a mathematical link
between the underlying partial differential equation
generating the turbulent flow field and Lagrangian
mixing. In particular, the quantities appearing in The-
orem 1 can be translated, at least locally in time,
to expressions involving the velocity fieldu and its
derivatives. It is then a feasible to study the PDE
governing the evolution ofu in time, and estimate the
evolution of spatial regions which contain coherent
structure boundaries. A first step in this direction has
been taken by Larcheveque [23], where the relation-
ship between the Okubo–Weiss parameterQ and the
Navier–Stokes equation is investigated.

We finally note that our approach to defining and
locating distinguished material lines can be extended
to three-dimensional turbulence. In that case coher-
ent structure boundaries will again be sought as local
minimizers or maximizers of the hyperbolicity time
fields. The resulting boundaries can be material lines
or material surfaces, determined by a set of conditions
involving the time-dependent invariants of the tensor
∇u(x(t), t). While the analysis is more involved, the
resulting conditions are still surprisingly simple, just
as in the two-dimensional case. For details, we refer
the reader to [18]. In that reference an alternative ap-
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proach, based on a direct computation of Lyapunov
exponents from particle paths, is also shown to pro-
duce sharp Lagrangian coherent structure boundaries.
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Appendix A

Here we give a precise definition of finite-time
uniform hyperbolicity for trajectories of the velocity
field (1) and sketch the proof of our main theorem in
Section 9.

First, recall that by incompressibility, any linearly
unstable piece of a material surface must contain
exponentially converging trajectories. As a result, on
the instability intervalIu, an unstable material sur-
face necessarily contains “saddle-type” trajectories.
Searching for the linearly unstable portions of mate-
rial surfaces is therefore equivalent to searching for
trajectories that are of saddle nature on arbitrary short
time intervals withinIu.

In [17], the main focus was precisely the detection
of such uniformly finite-time hyperbolic trajectories.
Here we first recall the exact definition of uniform
finite-time hyperbolicity used in [17] for general (com-

pressible) flow fields of the form (1). For a fixed tra-
jectoryx(t), we shall use the notationDhτ ≡ ∇Fhτ (x0).

Definition A.1. We call a trajectoryx(t) uniformly
hyperbolicon the time intervalIu if for some con-
stants 0< λ,µ < 1 and for sufficiently smallh > 0,
there exist two families of one-dimensional subspaces
E+
τ (h) andE−

τ (h) of R2, depending continuously on
τ andh, such thatE+

τ (h)⊕ E−
τ (h) = R2, and

DhτE
±
τ (h) = E±

τ+h(h),

||Dhτ |E−
τ (h)

|| ≤ 1 − hλ,

||[Dhτ ]−1|E+
τ+h(h)

|| ≤ 1 − hµ

for all τ, τ + h ∈ Iu.
We now recall the main theorem from [17]. We shall
use the notation introduced in Section 9, the only
difference being that we initially do not assume in-
compressibility. As a result, the eigenvaluesλ1(t) > 0
and −λ2(t) < 0 of the velocity gradient alongx(t)
will typically not be equal. Accordingly, the notation
for the minimum ofλj (t) over a time intervalIu will
beλj min.

Theorem A.1. Suppose that for a trajectoryx(t) of
(1) and for all t ∈ Iu,

det∇u(x(t), t) < 0, (A.1)

√
2β

[
1

λ1 min
+ 1

λ2 min

]
< α, (A.2)

γ + 2β2

α2λ1 minλ2 min
λ2(t) < λ1(t), (A.3)

γ + 2β2

α2λ1 minλ2 min
λ1(t) < λ2(t), (A.4)

with γ defined as

1

α3λ1 minλ2 min
{
√

2β[α2λ1 minλ2 min

+
√

2αβ(λ1 min+λ2 min)+2β2]}−1 (A.5)

Thenx(t) is uniformly hyperbolic onIu. 4

4 In the original formulation the theorem has an additional con-
dition. However, this extra condition follows from (A.2), a simple
fact that was overlooked in [17].
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The proof of Theorem A.1 is based on a care-
ful local analysis of the flow nearx(t). In particu-
lar, in a local coordinate system fixed tox(t) one
can seek conditions under which the “instantaneous
hyperbolicity” assured by condition (A.1) for the Eule-
rian frame translates to actual uniform finite-time hy-
perbolicity in the Lagrangian frame. In this sense, the
proof is a careful mathematical study of the validity of
the Okubo–Weiss criterion for hyperbolic regions (cf.
Section 10). It involves the smooth extension of the
finite-time velocity field to an infinite-time field, the
construction of stable and unstable manifolds for this
extended field using Perron’s method, and the deriva-
tion of conditions ensuring uniform hyperbolicity of
these manifolds on the original time interval [t0, t1].
For details, the reader is referred to [17].

To prove Theorem 1, we need to argue that the con-
ditions of Theorem A.1 are equivalent to those of The-
orem 1 in the case of incompressible flows. First, note
that for incompressible flowsλ1(t) = λ2(t) ≡ λ(t),
λ1 min = λ2 min ≡ λmin, which gives the following
simpler form for conditions (A.2)–(A.4):

2
√

2β

λmin
< α, (A.6)

γ + 2β2

α2λmin
λ(t) < λ(t). (A.7)

Using (A.6), condition (A.7) can be rewritten as

λ(t) >
γα2λ2

min

α2λ2
min − 2β2

.

This last inequality holds for allt ∈ Iu if and only if

λmin >
γα2λ2

min

α2λ2
min − 2β2

,

or, equivalently,

α2λ2
min − 2

√
2αβλmin − 2β2 > 0,

where we used (A.5). Sinceλmin > 0 andα > 0 by
definition, it is simple to verify that this last inequality
is equivalent to

λmin > (2 +
√

2)
β

α
. (A.8)

But condition (A.8) implies (A.6), thus, for incom-
pressible flows, the conditions of Theorem A.1 sim-
plify to (A.1) and (A.8), as claimed in Theorem 1.
Finally, (13) follows directly from the estimates in
[17].
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