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We present single-cell clustering using bifurcation analysis (SCUBA),
a novel computational method for extracting lineage relationships
from single-cell gene expression data and modeling the dynamic
changes associated with cell differentiation. SCUBA draws tech-
niques from nonlinear dynamics and stochastic differential equa-
tion theories, providing a systematic framework for modeling
complex processes involving multilineage specifications. By ap-
plying SCUBA to analyze two complementary, publicly available
datasets we successfully reconstructed the cellular hierarchy dur-
ing early development of mouse embryos, modeled the dynamic
changes in gene expression patterns, and predicted the effects
of perturbing key transcriptional regulators on inducing lineage
biases. The results were robust with respect to experimental
platform differences between RT-PCR and RNA sequencing. We
selectively tested our predictions in Nanog mutants and found
good agreement between SCUBA predictions and the experimental
data. We further extended the utility of SCUBA by developing a
method to reconstruct missing temporal-order information from
a typical single-cell dataset. Analysis of a hematopoietic dataset
suggests that our method is effective for reconstructing gene
expression dynamics during human B-cell development. In sum-
mary, SCUBA provides a useful single-cell data analysis tool that is
well-suited for the investigation of developmental processes.
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Stem and progenitor cells constantly face critical choices be-
tween different cell-fate events, such as self-renewal, dif-

ferentiation, and cell death (1), leading to significant cellular
heterogeneity. Although the molecular mechanisms involved in
these processes are not yet completely understood, it is generally
accepted that transcriptional regulators, such as DNA-binding
transcription factors and chromatin regulators, play an important
role in cell-fate decisions. In certain cases, the activity of a small
number of transcription factors, also known as master regulators,
may initiate cell-fate transitions by activating a large number of
cell-type-specific genes. Well-known examples include GATA1
for erythropoiesis (2), Pu.1 for myelopoiesis (3), and MyoD for
skeletal muscle formation (4). Conversely, pluripotency can be
reestablished by forced expression of a small number of selected
transcription factors in differentiated cells (5). Another impor-
tant process contributing to cellular heterogeneity is biological
noise, caused by, for example, random environmental fluctua-
tions or stochastic effects in transcriptional networks. Sufficient
noise can enable cells to reach dynamically unstable states (6, 7).
Despite these important studies, it remains difficult to reconsti-
tute the sequence of events generating cell-fate transitions and
cellular heterogeneity.
A major challenge for the characterization of the source of

cellular heterogeneity is that stem and progenitor cells are un-
derrepresented in the total cell population. Owing to their low
abundances, they are difficult to detect using traditional ap-
proaches, which only measure averages over large populations of
cells. Even more difficult is the task of capturing the precise time
when a cell undergoes a cell-fate transition. Recently, new tech-

nologies are being rapidly developed to quantify gene expression
at the single-cell resolution (7–23), providing an unprecedented
opportunity for the detection of such rare events. Nonetheless,
interpretation of these novel kinds of data remains a difficult
task owing to the lack of suitable computational methods.
In some previous studies the generation of cellular heteroge-

neity has been described using dynamical system approaches.
In the simplest scenario, a dynamical system is an autonomous
system that evolves in time according to a set of deterministic
rules (24). Although the exact trajectory depends on the initial
point, in time, most trajectories will converge to an attractor,
which may be characterized as an equilibrium state, an oscilla-
tion, or a more complex behavior. Rigorous studies of cata-
strophic phenotypic changes were pioneered by René Thom,
who showed that a surprisingly small number of prototypic sce-
narios can explain a wide variety of phenomena (25).
Different cell types can be modeled as attractors of the dynamic

gene regulatory networks (26, 27), and catastrophic changes of the
attractors may lead to significant cellular heterogeneity (28). To
date, the dynamical systems approach has been applied to the
study of a number of biological systems (28–32), but most of these
systems are relatively simple, in the sense that the underlying
regulatory network is well understood. To overcome this limi-
tation, here we have developed an approach, called single-cell
clustering using bifurcation analysis (SCUBA), to systematically
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identify bifurcation events directly from single-cell data without
prior biological knowledge.
We have successfully applied SCUBA to three distinct data-

types: RT-PCR (9), RNA sequencing (RNA-seq) (19), and mass
cytometry data (33). Using single-cell RT-PCR data (9), we have
correctly identified two bifurcation events during early develop-
ment of mouse embryos, reconstructed the dynamic landscape of
changes in gene expression patterns, and experimentally vali-
dated our model by testing its prediction for the effect of Nanog
perturbation on cell lineage biases. Analysis of RNA-seq data
gave similar results, indicating that our method is robust with
respect to experimental platform differences. We have further
developed an approach based on principal curve analysis (34)
to infer temporal order, thereby extending the applicability of
SCUBA to datasets with no temporal information. Taken to-
gether, SCUBA provides a useful and robust tool for charac-
terizing cellular heterogeneity and gene expression dynamics
from single-cell gene expression data.

Results and Discussion
General Framework of SCUBA. Consider an experimental study in
which, to investigate cell differentiation events during develop-
ment, multiple cells are subjected to single-cell measurements and
grouped according to developmental time (Fig. 1, Top), which
might be either known a priori or inferred indirectly. Our goal is
to automatically identify gene expression patterns associated
with cell differentiation from single-cell data. We model the
developmental process using a stochastic dynamical system that
has the following properties: First, at each developmental time,
single-cell gene expression changes are determined by a stochastic
dynamical system, containing both deterministic and stochastic
components; second, each cell is randomly sampled from the
equilibrium distribution of the stochastic dynamical system; and
third, the changes of the stochastic dynamical system across time
can be parameterized. An immediate consequence is that most
cells reside in states that are close to the attractors, whereas only
a small number of cells may undergo transitions from one attractor
to another. The appearance of multiple new cell types is modeled
as a bifurcation process, corresponding to the emergence of new
attractors. The major goals of SCUBA are to recover the cellular
hierarchy and to quantify the dynamics along the bifurcation events.
Specifically, our method uses a two-step approach, as illus-

trated in Fig. 1. In the first step, we estimate the locations of the
stage-specific attractors and their relationships, using a binary
tree model. For simplicity, we only consider steady-state attrac-
tors. In the second step, we quantitatively model the dynamics in
the reduced state space along each bifurcation direction, using
a potential V(x) to characterize gene expression dynamics asso-
ciated with each bifurcation event (Fig. 1, Bottom). Of note, the
parameter space is divided into two regions, corresponding to
one or two attractor states, respectively, and their boundary is
given by 4a3 − 27b2 = 0. The details are explained in Materials
and Methods.

Bifurcation Events During Mouse Early Embryonic Development. We
first applied SCUBA to analyze a published dataset (9) where
the developmental stage for each cell is known. In that study, the
authors used high-throughput RT-PCR to quantify the expres-
sion levels of 48 selected genes, including 27 key developmental
transcription factors, in 438 individual cells isolated from early-
stage mouse embryos. Cells were extracted at seven distinct time
points, each corresponding to a cell-doubling event, from the
1-cell zygote to the 64-cell blastocyst. There are two well-char-
acterized cell differentiation events during this process (35). The
first one occurs at the 32-cell stage, where totipotent cells dif-
ferentiate into trophectoderm (TE) and inner cell mass (ICM),
whereas the second event occurs at the 64-cell stage, where ICM
further differentiates into primitive endoderm (PE) and epiblast

(EPI). At the end of this period, the embryo contains three
distinct cell types: TE, PE, and EPI.
By applying the first step of SCUBA we identified two bi-

furcation events, at the 32-cell and 64-cell stages, respectively
(Fig. 2A). The timing of these events matched exactly the oc-
currence of the aforementioned cell-differentiation events. To
test whether our clustering results indeed reflected true lineage
differences, we used our results as the basis to predict cell line-
ages in an independent fluorescently labeled cell population
studied in ref. 9. Out of the 37 cells that could be compared in
this manner, we found only one misclassification error, indicating
that our predictions were highly accurate (Fig. S1) (see SI Materials
and Methods for details). To further test the robustness of our
clustering results, we simulated and analyzed 1,000 datasets by
resampling the data using bootstrap (36) (see SI Materials and
Methods for details). Cells were assigned to the same clusters
with high frequencies (Fig. S2), indicating the stability of our
method. Furthermore, we subsampled the data to test how many
cells were needed to reliably detect bifurcations. Whereas the
32-cell bifurcation was detected with as few as 20 cells (Fig. S3A),
at least 50 cells were required to detect the 64-cell stage with

Step 2: Modeling gene expression dynamics using bifurcation theory
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Fig. 1. Overview of the SCUBA method. (Top) Structure of single-cell data.
Individual cell samples are ordered by their corresponding developmental
time. (Middle and Bottom) Schematic of the two main steps of SCUBA. In the
bottom panel, the parameter space is divided into two regions, corresponding
to one (green region and I) or two attractor states (blue region and II), respec-
tively. The surface on top of parameter space shows the steady-state solutions
corresponding to each parameter setting. Stable and unstable steady states
are colored differently.
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70% sensitivity (Fig. S3B). Therefore, the number of cells that
need to be assayed at a certain developmental stage depends not
only on the differences between the cell clusters but also on the
complexity of the tree structure at that stage.
Despite the complexity of the 48-dimensional gene expression

pattern, each bifurcation direction clearly separated cells into
two distinct populations. In comparison, the traditional principal
component analysis method applied independently at each stage
can also separate the different cell types (Fig. S4). However, be-
cause different principal components are derived at different stages,
it is difficult to compare the patterns across time and to infer lineage
relationships between different developmental stages.
The weight of each gene along a bifurcation direction revealed

its relative contribution to the differentiation process (Fig. 2B and
Dataset S1). Many known important developmental regulators
(red labels in Fig. 2B) had large weights that were consistent with
their functional role (37–39). For example, at the 32-cell stage,
the bottom-ranked transcription factors were Id2 (inhibitor of
DNA binding 2) and Tcfap2a and the top-ranked transcription
factors Sox2 [SRY (sex determining region Y)-box 2] and Snai1.
At the 64-cell stage, the bottom-ranked transcription factors were
Sox2 and Klf2 and the top-ranked transcription factors Gata4
(GATA binding protein 4) and Runx1.
For comparison, we applied SPADE (spanning-tree progression

analysis of density-normalized events), a popular method that does
not take temporal information into account (10, 40), to the same
dataset. We found that SPADE could not effectively distinguish
cells from different time points and cell lineages (Fig. S5), suggesting
the utility of temporal information in accurate reconstruction of the
cellular hierarchy (see SI Materials and Methods for details).

We then focused on the local dynamic change of gene expres-
sion patterns associated with each bifurcation event. As expected,
the overall variance of gene expression increased dramatically
during both bifurcation events (see total bar lengths in Fig. 2C).
Interestingly, the increase was almost entirely contributed by
the bifurcation direction (red portion in bars in Fig. 2C), suggesting
that insights can be gained by focusing on the reduced dynamics
along the bifurcation directions.

Modeling Dynamic Changes in Gene Expression Patterns Associated
with Bifurcations. Next we investigated the gene expression dy-
namics associated with each bifurcation event by using step 2 of
SCUBA. Specifically, we projected the high-dimensional gene
expression pattern on the bifurcation direction and then inferred
the potential function V ðxÞ by fitting the projected data (see Eq. 3
inMaterials and Methods). The fitted parameters values are shown
in Table 1. As expected, the potential changed from single-well
to double-well for both bifurcations (Fig. 3). Such catastrophic
changes are characteristic of multilineage cell-fate transitions.

Prediction of the Effect of Biological Noise on the Maintenance of
Lineage Diversity. Our analysis provides a systematic way to
evaluate the contributions of deterministic and stochastic forces
in establishing cell-fate selection. It is important to note that
4a3 − 27b2 > 0 does not guarantee that the two states after the
bifurcation will be clearly distinguishable in the data, because
stochastic noise may mask the difference between these two
states. Similarly, 4a3 − 27b2 < 0 may not be sufficient to maintain
the stability of a cell type, if its stabilizing effect can be countered
by noise. Eq. 3 (Materials and Methods) provides a guide to
quantitatively assess the balance between the deterministic and
stochastic forces. In particular, for cases with small b and ap-
proximately symmetric attractors, differences between the two
attractors after bifurcation can only be detected when a> σ

ffiffiffi
2

p
.

For both bifurcations, b is small and the estimated value of a is so
that a> σ

ffiffiffi
2

p
, providing a theoretical explanation for why distinct

cell types can be observed at these time points. However, the
existence of noise provides a window of opportunity for manipu-
lating cell fates, which may have interesting applications.
To investigate the effect of gene expression noise on the choice

of cell fates during differentiation, we compared results from
changing the noise level σ (see Eq. 3 and Eq. S4 in SI Materials and
Methods) to Kσ. The steady-state distribution ψS now becomes
ψSðxÞ=C  e−2V ðxÞ=K2

. Fig. 4A shows that the peaks corresponding
to the two attractors at the 32-cell stage become broader as K
increases, indicating each attractor state becomes less stable.
Also, the areas under the peaks are more similar, indicating that
the bias between these two states is reduced. For example,
doubling the noise (K = 2) would result in an almost even dis-
tribution between the two states, whereas reducing the noise by
a factor of 2 (K = 1=2) would lead to a stronger bias toward the
TE lineage. The effect of noise is more dramatic at the 64-cell
stage (Fig. 4B), where the potential V ðxÞ is more asymmetric. It
is important to note that our calculations represent an upper-
bound estimate of the effects of biological noise, because they do
not take into account the technical variation in single-cell gene
expression measurements. These results point out that noise may
play an important role in the maintenance of cell-type diversity.
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Fig. 2. Lineage tree reconstructed based on single-cell RT-PCR data in mouse
embryos. (A) Overall structure of the dynamic clustering and projection of the
clustering pattern onto the plane spanned by the two bifurcation directions.
Note that these two directions, X32 and X64, are not exactly orthogonal. Each
color represents a different cluster. Parent–progeny cluster pairs are connected
by straight lines. (B) Relative weight of all genes on the two bifurcation direc-
tions. Genes with the biggest and smallest weights along X32 and X64 are
labeled. Transcription factor labels are in red. (C) Change of gene expression
variance associated with dynamic clustering. Node size represents total variance
for each cluster, color-coded as in A. Inset color bars compare the total variance
before and after each bifurcation event, as indicated by the curly brackets.
The total variance is further decomposed into two portions, corresponding
to the bifurcation direction (red) and all other directions (blue).

Table 1. Fitted model parameters for the 32- and 64-cell
bifurcations of the RT-PCR dataset

Bifurcation σ b aT0 aT1 aTb

32-cell 75.6 −18.0 −1,156.9 −204.0 232.7
64-cell 81.8 84.8 −1,003.3 −68.5 205.7
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Prediction and Experimental Validation of the Effects of Transcription
Factor Expression Level Perturbations on Lineage Bias. SCUBA
provides a venue to predict the effect of perturbing the expression
level of a certain transcription factor on the differentiation process
leading to two new cell types. We reasoned that if the perturbation
size is sufficiently small its effect could be approximated by the
change in the initial conditions without modifying the underlying
epigenetic landscape. In a system that contains multiple attractor
cell states, changes in initial conditions may alter the final pop-
ulation composition into different cell types. We defined the lin-
eage bias introduced by a transcription factor perturbation as the
change induced in the probability of reaching each attractor cell
state. To predict the bias resulting from perturbing each tran-
scription factor, we first calculated its effect in changing the
initial conditions (away from C in Fig. 5A) and then made use of
the splitting probability functions (41) (Fig. 5A and SI Materials
and Methods). For example, our model predicts that a twofold
reduction of Id2 would result in an ∼0.035 (∼7%) increase in the
splitting probability of falling into the ICM attractor at the 32-
cell stage (Fig. 5B), and a twofold reduction of Sox2 (red dot in
Fig. 5A) would result in an ∼0.02 (∼4%) increase in the splitting
probability of falling into the PE attractor at the 64-cell stage
(Fig. 5C). It is important to note that our model predicts a rel-
atively small effect of a single factor on the differentiation bias,
suggesting that the combination of multiple regulators is re-
quired to control cell-fate transitions.
We then focused on a specific transcription factor Nanog

(Nanog homeobox protein) and carried out experimental vali-
dation. Nanog is known to be an important regulator in mouse
embryo development, with a role in epiblast lineage specification
(42), and whose transient fluctuations mark commitment (43).
Consistent with the literature, our model predicted that altering
the levels of Nanog would change the balance between the dif-
ferent cell lineages (Fig. 5 B and C). Specifically, decreasing the
level of Nanog would lead to a bias away from EPI and toward
PE at the 64-cell bifurcation (Fig. 5C).
To test this prediction, we generated Nanog mutant mouse

embryos by heterozygous crosses and quantified the expression
level of the 48 genes in each embryo using the same RT-PCR
assay as in ref. 9 (see SI Materials and Methods for details). A

total of 25 embryos were profiled at approximately the 64-cell
stage, and some of their genetic differences were reflected by
their Nanog expression levels (Fig. 5D). Although each embryo
was profiled as a whole, we were able to estimate its cell-type
composition by decomposing its gene expression pattern as
a weighted sum of the three cell-type-specific signatures and then
estimating the lineage bias associated with the 64-cell bifurcation
(see SI Materials and Methods for details). As expected, decreasing
Nanog expression values (higher Ct) led to a bias toward PE in
mutant embryos (Fig. 5E). However, looking at Nanog values
provides only a partial explanation, because predictions of a null
model based on the Nanog expression levels alone drastically
overestimated the effect of the perturbation (Fig. 5E). A likely
explanation is that the loss of Nanog was counterbalanced by other
factors. To test whether such coordinated effects can be correctly
predicted by our SCUBA analysis, we predicted the bias introduced
by Nanog perturbation based on the perturbed gene expression
dynamics as discussed above (also see Fig. 5C and SI Materials and
Methods). This provides a much more accurate prediction (Fig.
5E). The remarkable agreement between our predictions and the
experimental results strongly validates our method.

Analysis of Single-Cell RNA-seq Data Shows Robustness of SCUBA.
Recent developments in single-cell RNA-seq technologies have
enabled whole-transcriptome profiling. To test whether SCUBA
is useful for analyzing RNA-seq data we reanalyzed a recently
published dataset (19) covering the same time span in early
mouse embryo development as the RT-PCR dataset analyzed
here (9). The RNA-seq experiments detected a total of 22,958
genes in 294 single cells, but many genes were expressed at a low
level and subject to considerable technical variation (19, 44).
Therefore, we focused on a subset of genes that were likely to be
discriminative, selecting the 1,000 most variable genes that were
expressed (>1 reads per kilobase of transcript per million reads
mapped) in at least 30% of the cells. SCUBA analysis of this
filtered RNA-seq gene signature resulted in a binary tree struc-
ture similar to that for the RT-PCR data (Figs. 2C and 6A), both
having two bifurcations at the same developmental stages. The
slight difference of the timing of the second bifurcation is likely
because the RNA-seq dataset also includes some 48-cell em-
bryos, which were not profiled in the RT-PCR dataset.
To do a quantitative comparison we focused on the 32-cell bi-

furcation, because the other bifurcation was only supported by a
small number of cells in the RNA-seq dataset. Among the 1,000
most variable genes, 13 were also present in the RT-PCR dataset.
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Fig. 3. Reconstructed gene expression dynamics associated with the 32-cell
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Of note, the contributions of these genes to the bifurcation axis
were remarkably reproducible despite the platform differences
(R2 = 0.86; Fig. 6B). In addition, the RNA-seq analysis uncovered
additional genes known to be important for either embryonic
development [such as Sox15 (45) or Id2/Id3 (46, 47)] or the estab-
lishment of tight junctions to form the placenta [such as claudins
(48, 49)] that were also associated with high weights (Fig. 6C). We
projected the expression profile of the 1,000 genes onto the bifur-
cation direction and fitted the potential landscape based on Eq. 3
(Materials and Methods and Fig. 6D and E). The resulting landscape
had a shape similar to the one obtained for the RT-PCR dataset
(Fig. 3B). Taken together, these analyses strongly suggest that
SCUBA is also useful for RNA-seq data analysis and the results
are robust with respect to experimental platform differences.

Analysis of Human B-cell Differentiation and Comparison with Other
Methods. Whereas the bifurcation analysis in SCUBA requires
temporal information, it has not escaped our notice that such
information may be difficult to obtain experimentally. In some
cases, it is feasible to infer the temporal order between the cells by
inspecting the expression pattern of known lineage markers. More
generally, computational methods [Wanderlust (33) and Monocle
(50)] have been recently developed to infer “pseudotime” in silico.
Therefore, one strategy is to combine these methods with SCUBA
to analyze datasets with no temporal information. In addition,
here we present an alternative strategy to infer pseudotime and
compare its performance with existing methods.
As an example, we obtained a publicly available single-cell

mass cytometry dataset, measuring 18 markers in ∼20,000 cells at
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different stages of human B-cell development (33). Cells were
extracted from a snapshot of the bone marrow, therefore bearing
no temporal information. The B-cell development is primarily
a monolineage differentiation process, serving as a new test for
SCUBA. We inferred the pseudotime in two steps. First, we used
t-SNE (51) to reduce the data into a 3D space. Second, we fitted
a smooth curve passing through the reduced data using the prin-
cipal curved analysis (34) (see SI Materials and Methods for details).
Although the resulting curve had no direction, we were able to
further distinguish the start and end positions based on the ex-
pected change of CD34 expression during hematopoiesis. For
each cell, its corresponding pseudotime, called SCUBA pseudo-
time, was quantified by its relatively mapped position along the
principal curve and the values were normalized between 0 and 1
(Fig. 7A). After sorting the cells based on pseudotime, we
reconstructed the temporal gene expression profiles during
B-cell development (Fig. 7B) and found that the pattern was in
good agreement with the literature (52). Specifically, cells had
initially high values of CD34, followed by CD38 and CD10, and
finally high levels of CD19 and CD20, which are known land-
marks of B-cell development.
Compared with two recently published methods, Wanderlust

(33) and Monocle (50), our pseudotime inference strategy is
conceptually simpler. Also, unlike Wanderlust, it is unnecessary
to select an initialization cell, but the principal curve analysis
automatically detects the start and end as part of the curve fitting
procedure. Of note, the inferred pseudotime was highly corre-
lated with Wanderlust (R2 = 0.70; Fig. 7C). The temporal gene
expression patterns inferred from SCUBA and Wanderlust were
also similar (compare Fig. 7B and Fig. S6). In contrast, Monocle
(50) seemed to have problems analyzing a large number of cells
because it failed to run whenever we included more than ∼900
cells in the analysis. We tried to overcome this limitation by

random subsampling but found the results were highly sensitive
to the sampling differences (see Fig. S7 and SI Materials and
Methods for details).
Using the pseudotime inferred from SCUBA (or Wanderlust,

respectively), we divided the cells into eight equally sized groups
ordered by pseudotime and then applied our bifurcation analysis
to infer cellular hierarchy. Most of the cells were aligned along
a single branch of the binary tree, largely consistent with a mono-
lineage differentiation process view of B-cell development. How-
ever, analyses of the data ordered with both methods detected a
bifurcation event, separating cells into two branches with about
one-third and two-thirds of the population, respectively, for the
SCUBA analysis (Fig. 7D). Comparison of the signatures of the
two branches revealed that cells in the smaller subpopulation had
higher IgM (intracellular and especially on the surface) and Kappa
(Fig. S8), indicating that a fraction of the cells formed a more
mature B-cell subpopulation. These results highlight the utility of
SCUBA to detect cell populations with distinct gene signatures.

Discussion
We have presented a method, SCUBA, for analyzing single-cell
gene expression data. Our method is suitable for the analysis of
time-course data sampled with sufficient temporal resolution,
and it can detect bifurcations reliably with as few as 20 cells. We
have shown that SCUBA is applicable to RT-PCR, RNA-seq,
and mass cytometry data and its results are robust with respect to
experimental platform differences. SCUBA uses bifurcation theory
to focally investigate the dynamic changes of gene expression pat-
terns during development. The major strengths are to automatically
detect critical multilineage cell-fate transitions without using prior
biological knowledge and to model the gene expression dynamics
associated with bifurcation events. SCUBA may also be used to test
whether the progression of a developmental process is along a
monolineage trajectory; however, in that case the second step of
SCUBA is not applicable. We have applied SCUBA to analyze
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three different datasets and shown that it provides a useful tool for
reconstructing cellular hierarchy and dynamics in complex systems.
Through analysis of public datasets we correctly identified two

bifurcation events during early development of mouse embryos
and quantified the major initiation events during cell differentia-
tion. Our model exquisitely explained the gene expression dy-
namics around each bifurcation event and predicted the effect of
perturbing key regulators in inducing lineage bias. We experi-
mentally tested these predictions by gene expression profiling of
Nanog mutant embryos and found excellent agreement between
our predictions and the experimental data. Although it requires
additional experimental validation, our method also provides
a promising framework to systematically evaluation the function
of stochastic noise in development. The agreement between RT-
PCR and RNA-seq analysis suggests that our method is robust
with respect to the experimental platform differences.
One of the limitations of SCUBA is its requirement of data

with temporal information for bifurcation analysis. Such informa-
tion may be difficult to obtain experimentally owing to technical
challenges. In certain situations one might be able to infer missing
temporal information by applying existing computational methods
(33, 50, 53) or the principal curve analysis approach presented
here. However, it remains difficult to infer temporal information
in general, especially if the cellular hierarchy is complex.
During the preparation of this paper we were aware of a recent

study (54) that also used Fokker–Planck equations as a model to
study the epigenetic landscape during cell reprogramming. In their
model, a constant energy function was used to model the entire
epigenetic landscape, and cell-fate transition was modeled as
moving from one local minimum to another. This is very dif-
ferent from our current approach, where we use a series of en-
ergy functions to model the epigenetic landscape. Our strategy is
essential here to identify the bifurcation events, where a local
change of energy function leads to the emergence of new minima.
Comparing these two approaches, SCUBA provides a more
natural framework for modeling multilineage differentiations.
A major goal of systematic characterization of cellular het-

erogeneity is to provide insights into disease processes, which in
turn may lead to novel disease-treatment methods. For example,
it is well known that each cancer constitutes a highly heteroge-
neous set of cells and tissues. A fundamental task is to understand
the role of each cell type in tumor genesis and maintenance. In
particular, increasing experimental evidence suggests the domi-
nant role of a small set of specialized cells known as cancer stem
cells (55, 56). Single-cell gene expression analysis, powered by
both technological and computational advances, will likely play
an important role in addressing these issues.

Materials and Methods
SCUBA uses a two-step approach, as illustrated in Fig. 1. The mathematical
details of the two steps are explained below.

Step 1: Inference of Cellular Hierarchy Using Dynamic Clustering. We infer the
cellular hierarchy by iteratively clustering and mapping between cells at the
different developmental time points. We assume that the gene expression
patterns change smoothly in time, so that a parental cell and its immediate
progeny have similar gene expression profiles. During development, a cell
may differentiate in a monolineage manner or may differentiate into mul-
tiple cell lineages, which we refer to as a bifurcation event. In such an event,
we assume that it only gives rise to two new lineages and that the temporal
resolution of the data is sufficiently high to capture every bifurcation. Al-
though these assumptions are not universally applicable, they are likely to be
valid in many situations and in practice may not be a severe limitation.

At the initial time point we divide cells into clusters with similar a gene ex-
pression pattern using k-means clustering and use the gap statistic (57) to de-

termine the number of clusters. At each of the following time points, each cell is
assigned to a parental cluster based on its gene expression profile. To determine
whether a bifurcation event occurs, the progeny of each parental cluster is fur-
ther divided into two distinct clusters by k-means, and the gap statistic is used to
select either the single-cluster or two-cluster model. This procedure is repeated
until the final time point. In this way we create a binary tree (Fig. 1,Middle) as an
initial estimate of the cellular hierarchy. Of note, if the process only involves
monolineage differentiation, then the resulting tree simply has no bifurcations.

Next, we refine the binary tree structure to optimally describe the global
gene expression pattern. To this end, we evaluate the performance of each
parameterization by using the following penalized likelihood function:

LðθÞ= log PðxjθÞ− λ
X

c

��μc − μaðcÞ
��2, [1]

where θ indicates all of the parameters involved in defining the tree struc-
ture, x is the observed data, μc and μaðcÞ are the centers of clusters c and aðcÞ,
respectively, aðcÞ is the parent cluster of c, and λ is a predefined constant, set
to λ= 1 in this paper. During this refinement process, the overall tree
structure might change as some clusters become empty, but it may not
create additional bifurcations. Further details and certain generalizations
are described in SI Materials and Methods.

Step 2: Modeling Gene Expression Dynamics Using Bifurcation Theory. Our next
goal is to model the dynamic changes of gene expression patterns along the
cellular hierarchy reconstructed in step 1. We focus on the bifurcation events
identified in step 1 and simplify the dynamics to one dimension by projecting
the high-dimensional gene expression patterns onto the bifurcation di-
rection, which is defined as the line connecting the centers of the two clusters
obtained from a common parental cluster. In the applications discussed in the
main text we found that such a dramatic reduction of dimensionality still
preserved significant information, allowing us to gain key mechanistic insights
about the developmental process.

We begin by considering an idealized scenario where the underlying
dynamics is deterministic. In this case, for all initial conditions the system will
eventually approach one of the attractor states. Therefore, each observable
cell state should correspond to an attractor, and two new cell types arise as
a result of a change in the attractor landscape, namely, one attractor loses
stability and is replaced by two new attractors. The general bifurcation that
can describe the appearance of new attractors in one-dimensional dynamical
systems is the two-parameter cusp bifurcation (see the equation in Fig. 1,
Bottom and ref. 58), one of the seven irreducible unfoldings according to
Thom’s Classification Theorem (25).

Mathematically, a cusp bifurcation is represented by the following first-
order ordinary differential equation (ODE) (24, 58):

dx
dt

=−x3 + xa+b [2]

with control parameters a and b. Depending on the values of these parame-
ters, Eq. 2 may have either one or two attractor states (Fig. 1, Bottom). To
further take into account the intrinsic stochasticity of gene expression (30,
31, 59), we modify Eq. 2 by addition of a stochastic term and model the
ensemble distribution of differentiation trajectories by the Fokker–Planck
equation (see details in SI Materials and Methods). The equilibrium distribu-
tion is given by ref. 41:

ψSðxÞ=C   e−2VðxÞ, [3]

with C a normalization constant and VðxÞ our potential (see step 2 in Fig. 1).
In this form, this potential VðxÞ is analogous to the epigenetic landscape
schematically described by Waddington (60), represented by a marble rolling
down a hill with rugged topology. By fitting Eq. 3 to single-cell gene expres-
sion data, the model parameters can be estimated (see details in SI Materials
and Methods). Of note, in this step we do not make any assumption about
the mechanisms controlling the potential landscape.
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