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In this paper the power spectrum of passive scalars transported in two dimensional chaotic fluid
flows is studied theoretically. Using a wave-packet method introduced by Ant@tisgnseveral

model flows are investigated, and the fact that the power spectrum hkstfsealing predicted by
Batchelor is confirmed. It is also observed that increased intermittency of the stretching tends to
make the roll-off of the power spectrum at the higlend of thek ! scaling range more gradual.
These results are discussed in light of recent experiments whé&re' acaling range was not
observed. ©2000 American Institute of Physids$$1054-15000)00701-]

Transport of passive scalars(such as impuritie9 is im- where ¢(X,t) is the passive scalar.
portant in a number of areas including geoscience, One can introduce the one dimensional power spectrum
weather prediction, and control of industrial pollutants. by averaging over all directions, i.e.,
When an external long wavelength source continually in-
jects passive scalars into a chaotic flow, small spatial
structures will develop due to the straining motion in the
flow. Thus the time asymptotic state contains a broad
range of length scales. In this paper we numerically in- whereD is the dimensionality of the integral domain and
vestigate the wave number(k) power spectrum of a pas-
sive scalar field. Our results are in good agreement with E(IZ’,t)=f dDFC(F,t)exrx—iIZ’ -F) (3)
Batchelor’'s theoretical prediction of the scaling of the
power spectrum ask™* until a high k diffusive cutoff s the D-dimensional power spectrum. Thg variance is
region. We find that the k dependence of the spectrum in  transported from small wave numbers to large wave numbers
the cutoff region depends on the properties of the flowin  4nq dissipated at the upper end of kepectrum. The cutoff
particular intermittency of the flow has an important ef- o the power spectrum is determined by diffusivity. We are
fect). A theory based on chaotic straining of wave packets  interested in the power spectrum that results when a tempo-
is employed to explain these observations. rally steady external source varying on some length scale
continually injects scalar into the fluid.

For turbulent flows with high Schmidt numbe/k,
wherew is the kinematic viscosity, and is the diffusivity of

We consider passive advection of a weakly diffusivethe scalax, there is a range of wave numbers for which the
scalar quantity(e.g., temperature or the concentration of anflow energy has dissipated, while the diffusivity is still neg-
impurity) in an irregular, time varying fluid flow. Due to the ligible. Put another way, there is a range of scalar lengths
straining motion of the flow, small fluid regions are stretchedoVer which the flow is smooth but the scalar has rapid varia-
and eventually folded as time evolves. As a result, finer andions. This range is called the viscous-convective range. The
finer spatial structure of the scalar can be created. At suffiPOWer spectrum in the viscous-convective range has been
ciently small length scale microscopic diffusion is significant Predicted by Batchelot to have the form (k) ~ k. This
and arrests the creation of smaller scale structures. relation is widely known as the Batchelor's law. We note

This process can be investigated by examining the waythat Batchelor’s reasoning is not confined to high Reynolds
number power spectrum of the passive scalar, which is theumber turbulent flows. In particular, the requisite stretching

Fourier transform of the correlation function defined by IS also present in low Reynolds number flows that are La-
grangian chaotic.

A number of experiment$ and numerical simulatiofis
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I. INTRODUCTION

- _ - — - _ - 2 A
C(F,H=((X+F,)B(X,1) = (S(X,1))*, (D have been carried out to check Batchelor's law. However,
the results were inconclusive. For example, recent experi-
dAlso at Department of Electrical Engineering. ments of Williamset al. * have found a significant deviation
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from Batchelor’'s law. These experiments were performed omethod is much less computationally costly and since it

a pseudo two dimensional turbulent flow. In their data,gives insight into the physical mechanisms controlling the

Batchelor’s law holds, if at all, only at the very beginning of power spectrum, we use it as the basis of our study in this

the viscous-convective range, where the flow can be envipaper.(Section IlIC contains a comparison of the wave-

sioned as resulting from localized vortices. packet method and direct solution of the passive scalar par-
In this paper we study Batchelor's law in two dimen- tial differential equation.

sional incompressible chaotic flows, using a wave-packet We now review aspects of the wave-packet method that

method introduced by Antonseet al>® Based on this are important for our current work. The transport equation

method we derive a simple form of the power spectfliyg.  for a passive scalar fieléd(X,t) is

(16)] for flows in which intermittency of stretching is not

negligible. To test our prediction we study three different

model flows. The first modeSec. 11l A) is a spatially peri- - TURD- Vo= kVZh+Sy(X,1), (4)

odic temporally irregular flow whose velocity field consists

of a few sinusoids with wavelength. The second model L o .
(Sec. I11B) is a flow generated by a small number of self- Whereu(x,t) is the velocity field, anS,(x,t) represents an
consistently evolving point vortices in a circular cylinder. external source. We assume the fluid flow is incompressible;

Aref 7 noticed that chaotic flows can be generated by a fewy - v=0. Neither the source nor the velocity field is affected
vortices. His observation makes it possible for us to use y ¢ ) o
simple Lagrangian representation to study chaotic flows. Our At @ length scale that is much smaller than the variations
vortex flow model is designed in the same spirit and is in-Cf S¢. the distribution of the scalar can be treated as con-
tended to be more similar than the first model to the flows irSiSting of & large number of sinusoidal wave packets, which
the Williamset al. experiment. The two models differ in the '€ themselves convected by the fluid flow and are affected
distribution of stretching for different areas of the fluid. The PY diffusion. At a fixed timet, ¢=3;¢;, where ¢,
first model has a relatively uniform distribution of stretching, =A; sin(k;j-X+6)) represents thep distribution on thejth
whereas the flow generated by self-consistently evolvingvave packetA; varies on a length scalé<L that is much
vortices can have stretching that is intermittent, that is, difdarger than| kj|*l and localizesp; in spacg. In these terms,
ferent regions of the flow have greatly different stretchingthe power spectrum has the form of
rates. Thus, for those fluid elements that repeatedly visit dif-
ferent regions, the rate of stretching varies greatly along their .
trajectories. For both models, we observe the'-scaling F(k,) =2 Fi(k,)=2 w;(t)d,(k— k1)), ()
range. For the third modéSec. Il C) we generate a velocity ) )
field adjusted to be similar to that in the experiment of Wil- _
liams et al. by solving the initial value problem of the Wherew;(t)=f@7d°x, ands,(k—|kj|) represents a func-
Navier—Stokes equation. We then obtain the power spectruriion of width |~ in k centered ak=|Rj| with 6, dk=1.
by taking the Fourier transform of the solution of the passiveThe exact form of§, and the value of” are unimportant
scalar partial differential equatioiPDE) for ¢(X,t). These providedL>/>k 1. [Thus, in principles eackj(k,t) is a
results are found to be in good agreement to results obtainesmooth function which concentrates in a neighborhood of
for the same flow by use of the wave-packet method. Againk;|, andF(k,t) is also a smooth function. However, for the
we observe a clea™* scaling range. purpose of making a histogram approximatiorFigk,t), we

In the paper of Williamset al,* three possible reasons may sample over a large number of wave packets and treat
that might explain the observed absence of a diedrscal- 5, as a delta function. The histogram made in this way as-
ing are mentioned:1) intermittency of the flow(2) residual  ymptotes to the true histogram as the number of samples
three dimensional variations in the passive scalar flow inasymptotes to infinity.
their supposed two dimensional configurati¢®); the local- We are interested in applying E¢p) in two cases{a)
ization of the scalar source and sink near the boundaries ofhere is no scalar sourc&£=0), but we assume that &t
the fluid. Our results strongly suggest tiiatis not a tenable =0 there is a distribution of scalar density with initial wave-
reason. Nevertheless we do find a significant effect of internumber spectrum concentrated at l&which we represent
mittency. In particular, |ncre§fed mtermntency tends to make,g Fl(k,t=0)=21~wj(0)5/(k—|I2j(t=0)|) (here the sub-
the roll-off at the end of th&" * scaling range more gradual. gerint | denotes “initial value problem). (b) The scalar
This role of stretching intermittency has already been disq |, ce continually injects passive scalar density athata

cussed by Kraichnah. constant rate, and we represent this by continually introduc-
ing wave packets at lok into the sum in(5). In case(a), as

Il WAVE-PACKET METHOD tincreases and the wave nurr!lk(,alevolves into the diffusive
range, the wave-packet variances decay &nk,t— )

In previous work a wave-packet method was introduced— 0. In caseb), the loss of wave packets through diffusion
for the study of passive scalar dynamidsand numerical at highk is balanced by the injection of wave packéty the
experiments with this method were shown to be in closesource at low k, and a time averaged steady state wave-
agreement with full numerical solutions of the PDE govern-number spectrurf 5(k) results(here the subscrig denotes
ing the passive scal@Eg. (4) below]. Since the wave-packet ‘“steady state’).
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In the absence of a source and diffusivity;(t), the  In general, a stretching direction may temporarily become a
variance of thejth wave packet, is constant in time. The contracting direction, hende(t) is not necessarily increas-

evolution ofk; can be determined as follows. Since the tra-ing at all times and may pass through a given fixed wave

jectory of a fluid element is given by numberk at several times. From E@10) we obtain a con-
. tribution from eachk; at each timetji(k) such thatkj(tji)
d¢ _ . =k
gt (&L, ® ~°
) eXF(—ZKTjikJ-Z)
with initial condition £(0)=X, the separation of two ele- Fs(k)NZ JE “Tdk fat
ments that are initially close to each othég(X,t), evolves ' h t=t; (k)
as exp(— 27, k?)
—qr (XD V)u. @ b i

. o where nj.E(kfldk/dt)h:t_ gives the instantaneous rate of
In the absence of a source and with zero diffusivity, &. tretchinlg li

says that the scalar field is constant along each trajectorﬁ . .
Thus the difference of the scalar fieldg between the two . !f the flow has umform stretching and the rate of stretch-

. . > o . ing is independent of time, as assumed by Batchelor, then
trajectories separated hy¢ is also constant in time. Since Kt <o), wher W s th niform rat ‘
Sp=S6E-V ¢, we haved(V ¢- 6€)/dt=0. Thinking of ¢ as sife?cch?n;l?;o . ?1((a)b)77_ives S_ 2; ‘llj[lgex _az% ]0
sinusoidal,V ¢~K; ¢, we haved(k;- 8€)/dt=0. Using Eq. or | ' o 4 gives 7=(2h) p(-2ht)]

(7) then yields the evolution of the wave number following a or larget>1/,

wave packet. 1
S T —, (12
dk; L o- 2h
E__V(U.kj). (8)
and Eq.(11) yields
When the diffusivity is small but nonzero, the variance o
exp(—
decays as Fo(k)~ —p( I: ) . (13
dW] 2
qr = 2K i ) For smallk, Eq. (13) gives thek  scaling.

R If the flow has substantial intermittency of stretching,
with initial conditionw;(0), wherek;=|kj|. In this case, Eq. then 7; has a nontrivial distribution. One model of this

(8) still holds but extra arguments are needede the Ap-  phenomenochis that the values; (k) and 7; (k) at a par-

pendix in R?f' 3. . ) . ticular wave numbek can be considered to be random vari-
As previously d'SCU§SEd' in the case of a statisticallypie5 which are selected on the basis of a distribution

steady external soyrcﬁ;,,(x,t), we can think of the.source as M(r,5) independent ok. That is, if one integrates Eqé),

continually launching wave packets at lowhich then (8), and(10b) for an ensemble of initial conditions and con-

ev_olve by(8) to highe_rk. In this case, each small area con- structs a histogram for the values; ( 7; ) the fraction falling
tains many overlapping wave packets each created by the v

source at a different time. Since, appropriate to a chaoti! e range dr,d») centered at (r.7) would be
flow, we assume that correlations decay exponentially rap (7 7)d7d7. Itwas argued in Ref. 5 thail (7, ) should
idly, the correlation between different wave packets can b e independent dffor st>1 since according to Eq10k) .
neglected. Thus, rather than continually adding new kow- he valge ofr; depends mos_tly on the rate of expongntlal
wave number wave packets (9), it will also sometimes be growth in the recent past. Slm_|larIWI(7-, ) should_be In-
convenient to represent the power spectrum for the Stead&ependent ofk for k>.1/|" With these assumptions the
stateF 5(k) as the time integral of the power spectrum for the ower spectrunis(k) given by(11) can be expressed as

initial value problemF,(k,t),° 1 (> (= M(ny
FS(k)NE f de dnT eX[X—ZKTkz). (14)
0 —o0

Fs(k)=wa|(k,t)dt

0 Integrating oveth gives another distribution
o) o M ,
- fo 3 exp(— 267K (1), (k—ki()dt, (103 M*m:f dh ﬁ”) , (15
L n
where we have takew;(0)=1 (i.e., each wave packet has which is the distribution of- weighted by the average of the
the same initial variangeand reciprocal of the stretching rate. Equatidm) then becomes
ok (s)ds 1 (=
Tj(t)zw- (10b) FS(k)NEj drM* (r)exp( — 2k 7k?). (16)
j 0
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[In _the case of uniform sEetchingM(r, n)=046(7 1 2
—(2h) Y 8(n—h) andM* (1) =s(hr—1).] Yn+1ZYn+§UTCO<T Xp+1F Gzn): (19
The contribution of a small intervdlr,7+d7] is given

by k~lexp2xH)M*(Adr. Using previous arguments, &d

each contribution has tHe ! scaling for smalk. Therefore, TUT 2

there should be a range & where the power spectrum Kyn+1=Kynt —— sin(T Ynt O1n|Ken, (20)
should obey Batchelor’s law, although the exact location and

form of the cutoff wherek™* behavior begins to fail is in 7wUT (27

general not given by13). In particular, Batchelor's formula Kyn+1= Kt L sin T Xn+1T 92n)ky,n+1' (21)

(13) predicts a sharp roll-off when the variance starts to de- » )

cay. However, when the flow has considerable intermittencyVn€re the position of a wave packet and its wave number are
of stretching, some wave packets remain unaffected by difc@lculated at time¢=T,2T,3T, and so on. _
fusion while others that were created at the same time may S"C€ the angles are randomly chosen between periods,
have started to decay. Due to the contribution of these slowlj1€7€ aré no KAM surfaces. To see this we note that a KAM
decaying wave packets, the power spectrum should have syrface for a two-dimensional map is an |_nvar|ant closed
smoother roll-off than is predicted bt3). This will be nu- ~ CUrve for that map. Thus mapping every point on the curve
merically confirmed in the next sections. Also, in the nextforward by one iteratioriperiod maps those points back on

section we will compare numerical results with3) and e Curve. Inour case, the map changes randomly from iter-
(16 ate to iterate. Hence a curve invariant to the map at one time

will typically not be invariant to the map at a subsequent
time. Thus there are no KAM surfaces, and we expect that
IIl. NUMERICAL EXPERIMENTS the fluid is totally mixed as time evolves.

Equations(6), (8), and (10) allow us to evaluate the Numerical experiments were performed using 1000
power spectrum of the passive scalar numerically. For a floWnitial conditions on a uniform grid andJT/L=0.5. The
whose velocity field5(X,t) is known, we can first simulta- average rate of stretching after tirhe 100T is given by the
neously integrate Eq$6), (8), and(10b) to determinelzj(t) Iegdlng Lyapunov exponent of the flow, numerlcal_ly deter-
and (1), and then sum over all wave packets and integratd"néd t be(h)~0.30=0.01, where the average is taken
over time[using Eq.(10a] to getF (k). We can also make °VE' all initial conditions. Sincéh)>0, the flow is chaotic.

: . A finite time Lyapunov exponerti(X,,t) for an initial con-
histograms oM * by using Eq.(15) and computd-g(k 0
by usging Eq_(16)_(T) y 9 Fal1y putds(k) dition X, and a timet can be computed as follows. Start at

time O with initial conditionX, and an initial differential

displacemenﬁfo from X,. Evolve the differential displace-
In this and the following subsection, we take=1.25 ment forward in time following the orbit fronX, to obtain

x 10" ®. Consider the velocity fieldsee Ref. 5 for more the differential displacemerﬂé(t) at timet. The finite time

A. Random-driven flow

detailed properties of this flongiven by exponent is therh(X,,t) =t~ In[|8&(t)|/|6&|]. For two di-
3(%,0) = U[&,f,(t)cog 2my/L + 6;(1)) tmhensi(;]nal incompressible flows$, can also be evaluated
roug
+&,f,(t)cog2mx/L + 6,(1)) ] (17 R
which is periodic inx andy with periodL. The functionsf h(Xy,t)=t" In (D) ) (22)
and f, are periodic in time with period [i.e., f; (t=T) Kol
= f I
1At)} and are given by In our numerical experiments, we comptiteby using Eq.
(1) = 1 for O<t<T/2 (22). For randomly choser, the quantityh(Xy,t) is ran-
()= 0 for T/2<t<T dom, and we can define a corresponding probability density
and function P(h,t) which we call the stretching distribution.
The stretching distribution?(h,t), for a realization of Egs.
£ ()= 0 for O=t<T/2 (18) and (19), is shown in Fig. 1a) at different times. For
2011 for Tr<t<T" larget, P(h,t) can be approximatédby InP(ht)=—tG(h)

The flow is in thex direction during the first half of each +o(t), or more informally

period and in the direction during the second half. To simu- P(h,t)~exd —tG(h)], (23

late a temporally chaotic velocity field we choose the angles, - o o - .
61(t) and 6,(t) at random(with uniform distribution in ~ WhereG(h)=G’(h)=0 at the minimunh of G. The utility

[0,277] at the beginning of each period and keep them con9f the scaling form(23) is that it givesP(h,t), a function of

stant during the whole period. two variables(h,t), in terms of a function of only one vari-
Equations(6) and(8) can be solved witli given by Eq. able,G(h). For the case where there are no KAM surfaces,
(17) for the evolution over one period earlier numerical experimerifshave yielded close agree-

ment with this form. Figure (8 shows plots ofP(h,t) ob-
tained by use of histograms at different timeAs expected

' (18 from (23), P(h,t) narrows with increasing time. Plotting

1 2
Xp+1=Xnt > UTco T Ynt 614
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15
\ @ 10° 1
10r[— t=50T
= - t=100T 10° |
£ - 1=200T| | =
—~ t=400T| ¥ =
5t i »
£ w
X 2
10 — Eq. (10a)
Eqg. (13)
0 --- Egq.(16)
10°
0.15 . .
10° 10' 10 10*
k
-~ O FIG. 3. kFg(k) versusk for the random driven flow. The solid lines are
< computed from Eq(109, the dotted lines are computed from Ed.3)
© (multiplied by an arbitrary constantand the dashed lines are computed
0.05 from Eq. (16).
0 5 0z o4 o (13) (based on uniform stretchipgnd (16) (which accounts
“h ’ : for intermittency. For the wave-packet method, we replace

(103 by
FIG. 1. (a) The distribution of the stretching factor at different times for the

randomly driven flon(h)~0.30+0.01.(b) The large deviation approxima- _ _ K2 Lt
tion for the randomly driven flow, which is given byP(h,t) FS(k)_zi 2 exd ZKTJ(tl)kJ(tI)]é(k k](tu))At: (24)

~exg —tG(h)].
where At is the time step for the ODE solver and=iAt.
Integrating(24) over a small intervalk,k+ Ak] yields

—t~1In P(h,t)—K [choosingK to be the minimum oveh of

—t~1InP(ht)], we see from Fig. 1 that the data plotted in FS(k)Ak:k<k-(t-;<k+Ak eXF(_ZKTJ(ti)kZ)At- (25

Fig. 1(b) collapses to a single curve, which we identify as B

G(h). [This collapse is essentially the content of F2@).]  Equation(25) allows us to make histograms kfg(k) ver-

The distributionM* (7) is discussed in the previous section susk. Equation(13) gives agreement with the wave-packet

and can be computed for a givérby first making a histo- method[Egs.(6)-(10a] only before the cutoff of the spec-

gram of M(r,7) and then using15). Figure 2 shows the trum. On the other hand, Eq16) agrees with the wave-

distributions M* (7) computed at several wave numbers.Packet method in the whole displayed region. We observe

Note that theM*(7) determinations obtained at different that the roll-off of the power spectrum is less sharp than the

times are in good agreement with each other as expected. prediction of (13). This is because the flow has stretching
In F|g 3 we p|ot the power spectrum Computed usingintermittency, which is described by the diStribUtiW(T).

Egs.(6)—(10a along with the power spectrum given by Eqgs. The cutoff for different wave packets with differents, is
spread over a wide range kfIn particular, the contribution

from the wave-packets that decay only at a largere sig-

1 ‘ . . nificant at the beginning of the roll-off. The number of such
wave packets decreases continuouslykaisicreases. This
— k=50 kes the roll-off less sh
- k=200 makes the roll-off less sharp.
0.8 1
........ k _ 500
B. Vortex flow
':0'6 1 In this section we consider model flows for which the
E vorticity is concentrated on a finite number of point vortices
0.41 1} 1 located atX;,X,,...,X,. The use of such vortex flows to
model physical velocity fields was introduced by Chdtin
0.2 ] and has been used extensively. The velocity field induced by
the jth vortex is given by
0 ' ‘ 50| — o (Y2¥i) L (x2x
0 5 1To 15 20 vi(X) =~ 5 ( e il (26)
FIG. 2. The distributions of* () for the randomly driven flow, computed Where M= V(x— Xj)2+ (y_yj)za and['; is the gtrength of
at different wave numbers. vortexj located ak; . Locally the flow rotates fluid elements
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counterclockwise (clockwisg around the vortex ifI’; 1
>0(I';<0). If the domain is the infinite plane, then the ve-
locity field is the superposition af;’s. That is,

ng Uj. (27)

If the domain has an impenetrable boundai, then Eq.
(27) needs to be modified to satisfy-n=0 on JD. We
consider the case where the domaBiris a circular cylinder
of radius one. In this case, the normal component of éach
on gD is cancelled byﬁj’ , the velocity field induced by an -1
image vortex of strengtﬂ“j’z—l“j, located at the mirror B
image ofX; . The motion of each vortex is determined by all

other vortices including image vortices. By Helmholtz's on ‘ ‘ _
theorem for inviscid, incompressible flows, eachis con- i (b)
stant in time. The equations of motion of the vortices are —

dx; 1 < Tiyj—y) . 1 < Tily;=yi)

01-02

dy; 1 (X=X 1 Ii(x;—x/
dy; _ (X =X) .(r,_,.z D g
jl

Gt 2r 2 2n

where r @

X[ =xi [(C+y?), y=vyil(xt+y?), 0

0 Xz 1

rii= V=) 2+ (y;— i),
FIG. 4. (a) Regular trajectoryX,(t) for an initial configuration given by
rj,i = \/(Xj —Xi')2+(yj _yi’)z_ %1(0)=(0.1,0.7),%,(0)=(0.5,0.5), X3(0)=(0.5,0.3), and with—T';=T,
=I"3=1. (b) The return map yields one dimensional closed curves, where
Equations(28) and(29) form a Hamiltonian system with 6, and 6, are the polar angles 6§ andX,. The surface of section is taken

. . 2 2_
Hamiltonian atx{+y3i=0.25.

1

H=7— [ _izj I'iI'j log|%; — ;| +|§;« I'i'j log|%; — x| Runge—Kutta method. Our statistics are based upon compu-
tation over theséapproximately 200pinitial conditions.

In numerical experiments, we need to be concerned
about the singularities at the location of the point vortices,
) ) where the velocity has infinite magnitude. These singularities
where §,y;) are the conjugate variables. may cause numerical problems. In addition, our assumption

In addition to the Hamiltoniakd, the angular momentum - hat the velocity field is relatively smooth is not valid near
|=X,I'j|X)|? is also a constant of the motion. Therefore, athese singularities. To overcome these difficulties, we re-
necessary condition for a system of such vortices to behavgiace the point vortices by vortex patches, i.e., the vorticity
chaotically is that there are at least three vortices. Arefis niformly distributed in a small circle centered where the
showed numerically that three vortices can be sufficient fopsint vortices were, so that there are no singularities in the
chaos. In this section we present numerical results fronjioy,. we assume that the motion of the vortex patches can
studying three model flowsi) a flow generated by a system pe described in the same way as the point vortices as long as
of three self-consistently evolving point vortices whose mo-they do not come too close to each other. This condition can
tion is integrablefii) a flow generated by a system of three pe satisfied as we select the radii of the patches appropri-
point vortices whose motion is chaotic; afidl) a flow gen- 4tely. We observe, however, that the results from using vor-

erated by a system of six vortices whose motion is chaotiCiey patches and from using point vortices agree with each
Notice that the Lagrangian dynamics of a flow can be chaotigiper.

even if it is generated by vortices whose motion is integrable.
(This situation is analogous to the restricted three body prob- ) )
lem, where the motion of the two large bodies is describedt T/7€€ integrable vortices
by Kepler orbits but the third infinitesimal body may move Figure 4a) shows the trajectory of vortex X,(t), for
chaotically) the case where the initial configuration is given %y0)

For each case we consider initial conditions on a uni-=(0.1,0.7), X,(0)=(0.5,0.5), X3(0)=(0.5,0.3), and the
form grid of spacing 0.04. Equation®8) and (29) are vortex strengths are-I';=I",=1"3=1. The regular pattern
solved, for each initial condition, by using a fourth order of the trajectory is apparent, and suggests that the motion of

+> [T Iog|>?i|] (30)
1)
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FIG. 5. The distribution of the stretching factor at different times for the

flow induced by three integrable vorticady)~0.17+0.02. FIG. 7. kFg(k) versusk for the flow generated by three integrable vortices.

The solid lines are computed from E@.0a and the dotted lines are com-
puted from Eq(13).

the vortices is integrabléi.e., quasiperiodic Figure 4b)

also confirms that the motion of the vortices is integrable close to the two positive vortices, which move as they circle

This figure shows the return map to the surface of sectio@round each other.

x2+y$=0.25. The return map yields one dimensional closed ~ Figure 7 shows the wavenumber power spectrum of the

curves, again implying quasiperiodic motion. Calculation ofpassive scalar computed from EG0a. The spectrum for

the trajectories of passive fluid elements for this flow suggesthis case does not conform to Batchelok's* law in any

that the presence of both integrable and chaotic regions dange ofk. This is not surprising since Batchelor’s argument

space. The distribution of the finite time stretching fafer ~ assumes exponential stretching, and this does not apply for

10 initial passive fluid element positions uniformly distrib- Wave-packets in the quasiperiodic part of phase space.

uted in x2+y?)<1 is shown in Fig. 5. The distribution has

a major peak nean=0 and possibly a minor peak ner 2 Three chaotic vortices

02 Thepsk b0 ' e o e once o it ' e shoue e k() o e e v
the initial configuration is given by;(0)=(0.1,0.7),X,(0)

grable. The existence of a minor peak shows that for 0ther=(0.2,0.9),23(0)=(O.5,0.3), and the vortex strengths are

trajectories the Lagrangian dynamics is chaotic. Such distri- "'~ 7' °0 . o .
butions have been previously discussed in Ref. 14. ['1=I',=I'3=1. The trajectory is imegular, suggesting

Figure 6 shows the evolution & for an arbitrarily cho- that t'he vortex mot.ion is chaotic. This is confirmed by cal-
; : culation of the leading Lyapunov exponent for the system of

sen wave packet in the chaotic part of the phase space. It {/Sortices(28) and (29), which is approximately 0.3. For the

observed thak; sometimes increases in sudden bursts fol- ' h

lowed by long flat or more gently increasing ranges. We call

such behavior intermittency. If we trace the trajectory of this 1

wave-packet, we find that the bursts occur when it gets very

0 100 200 300 400 500 X
t
FIG. 8. The trajectorn)k,(t) is irregular, where the initial configuration is

FIG. 6. The evolution of an arbitrarily chosen wave packet in the flow given by X;(0)=(0.1,0.7), X,(0)=(0.2,0.9), X3(0)=(0.5,0.3), and-TI";
induced by three integrable vortices. =I,=T3=1.
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FIG. 9. The distribution of the stretching factor at different times for the F!G- 11. kFs(k) versusk for the flow generated by three chaotic vortices.

flow induced by three chaotic vorticedh)~0.12+0.02. The solid lines are cpmputed from Eq.0a, the dotted lines are cqmputed
from Eq.(13) (multiplied by an arbitrary constantand the dashed lines are
computed from Eq(16).

flow generated by these vortices, the spatially averaged ) i )
Lyapunov exponent of passive advected particles Hs ber k. This may qlso explaln why the 7rT11|ddIe_ part of the
~0.12+0.02. From Fig. 9 we see that there is one main pealOWer spectrum differs slightly from the""-scaling.

in the distribution oth which is neakh), so the distribution is

more uniform than that in the integrable case. However3. Six chaotic vortices

compared to the randomly driven flow discussed eafec.

IA), the peak is broader. In this section we focus on how the power spectrum is

affected when the flow has more vortices. We study a flow

Figure 10 shows the evolution ¢ for an arbitrarily . . S :
chosen wave packet. The growth bf is apparently less geperqted .by a system of six vortices whose initial configu-
' ration is given byx;(0)=(0.1,-0.2), X,(0)=(0.2,-0.8),

intermittent than the case for the three integrable vortices, _ - NS N _

Fig. 6. This difference appeared to hold for other random)f3(0):(0'5’ 0.5), %,(0)=(0.1,0.5), X5(0)—(_O.7,9.1),

wave packet choices for the two flows X5(0)=(0.9,0.2), and whose strengths arel’y=I',=I's
Figure 11 shows the predictions of the spectriigfk) . ~Ta=—Ts=—Ts=1. The leading Lyapunov exponent

from €313 o setingas e doted e, £ o 1S 6T ofwrices = spproumiey 07, wnch
(16) [the M* (7) resulf as the dashed line, and E403 (the 9 P ' PP y

integral of F¢) as the solid line. The predictions of EA.6) the stirring is stronger when there are more vortices in the

oy N . flow. The spatially averaged rate of stretching/lie~0.28
and Eq.(10g are similar and significantly different from the Co 0 . -
prediction of Eq.(13). We believe that the small difference *0.02(the distribution ofh is presented in Fig. 250 the

between the predictions of E4L6) and Eq.(104 is due to flow is chaotic. The dlstr|.but|on ofi is more uniform than
. - o T L oo the other vortex flows. Figure 13 shows that Ef6) (the
insufficient mixing and the limitation of finite diffusion. In

this case, the distributioM* (7) depends on the wavenum- dashed curveagrees well with the power spectrum com-

10%°}
~ 10107
10°
G R . -
‘ . . ‘ 0 0.2 0.4 0.6 0.8 1
0 100 200 300 400 500 h

t
FIG. 12. The distribution of the stretching factor at different times for the

FIG. 10. The evolution of an arbitrarily chosen wave packet in the flowflow induced by the flow induced by six chaotic vorticgd)~0.35
induced by three chaotic vortices. +0.02.
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computed from Eq(16).
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FIG. 13. kF4(k) versusk for the flow generated by six chaotic vortices. The AT NN T ISR g
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C. Realistic flow

))}/

The transport of a passive scalar field which is advected
by a velocity field closely simulating the real velocity field of
the experiment of Williamset al. * is investigated in this
section. The velocity field is obtained by solving the two (b)
dimensional Navier—Stokes equation with a linear frictiongg. 14. (@) Power spectrum of velocity fielch) typical velocity field ¢

term =40). The length of the arrows is proportional to the magnitude of velocity
N field at the corresponding grid point.
dw(X)

ot

/

i
7
\

N

N o 1// /

S F R

P

+7-Vo=vV20—uw+S,(X), (31

wherew(X) is the scalar vorticity field€2z-V Xv), v is the
velocity vector field,v is the kinematic viscosityu is the

linear friction coefficientS,(X) is a source of vorticity given ring field used in the experiment of Williamet al. Then,

by the curl of the stirring force field=2-Vxf(X), where w(ky .k, ,t+At) is transformed back to real space. The dif-
f(X) is the stirring force field which in Ref. 4 is produced by fusive and source terms of the passive scalar fielldt
a Lorentz force on the fluid due to the combined effect of=kV2¢+S,(x,y), are treated in a similar way, while, for
permanent magnets placed under the fluid and an electricghe source function of the passive scald(x,y) =cos X
current flowing through the fluid The above equation is +cos2 is used. In the second phase of the split step the
obtained by taking the curl of the two dimensional Navier-convection parts of the vorticity field and the passive scalar
Stokes equation with a linear friction term. The vorticity field, Jw/dt=—0-Vw, dpldt=—0-V ¢, respectively, are
field is related to the stream functiop(x,y) by V2y=w,  solved in real space using the velocity field which is obtained
and the velocity field is related to the stream functiondby from the stream functiony(x,y) utilizing v=— (VX ¢2).
=—(VX42). The linear friction term models friction with [We note that our choice d&,(x,y) is different from the
the bottom of the container supporting the fluid layer. experiment, where dye is introduced at the boundary of the
Equation(31) for w and Eq.(4) for the passive scalar flow; see Ref. 4.
advection are solved numerically using a time split-step tech-  Figure 14a) shows the energy spectrum for the velocity
nique with periodic boundary conditions y. A system field of the numerical solution with the grid size of 1324
size of[ —m, 7] X[ —m,7] is used. In the first phase of the »=0.005,x=0.12. The value of. was chosen to match the
split step the Laplacian parts of both equations are solved iRalue for the experiment in Ref. 4, whilewas adjusted so
wave number space with the source terms and the lineahat the resulting flows resembled the measured flows of Ref.
friction term included. For the vorticity field,Jw/dt 4. The energy spectrum of the velocity field is obtained in
=vV20— pw+S,(X,y) is solved by fast Fourier transform- the following way. The energy density at a given wave-

the vorticity source functionS,(X,y)= a cos X(cos 4/+1)
is used to give an approximated functional form for the stir-

ing to wave number spacbri(x,y,t)aa(kx,ky,t)], fol-  yectork is evaluated by
lowed by w(Ky,ky,t+At)=w(Ky,ky,t)exd —(vké+w)At]
+8,(k.k)At, whereS,(k k) is the Fourier transform of E(K) = 3([T(K)|2+[T,(K)|?) (32
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FIG. 15. Passive scalar field &t 45. Kk

where 7,(k),5,(k) are Fourier transformations of o |
vx(X),vy(X), respectively. Then the energy spectrik) is
calculated by

E(k)zJ E(K)8(|k'| —k)d?k’. (33

The energy of the field at lggk~1 or k~10 is almost 16
times smaller than that at the lowdstn Fig. 14a). So the
velocity field with smaller scale thah~2#/10 does not
fluctuate much, which will justify our linear interpolation
approximation of the velocity field at the smaller scale later.
A typical velocity field is shown in Fig. 1¢). During the
course of the simulation, there are typically 3 large vortex
structures visible in the system. (b)
After the initial transient time, the passive scalar field, ] ] )
which is continuously influxed at the large Scale, is evolvedio, 1@ (k) ofpasie scar Diamends e o el umercal
to a field which has very small length scale due to stretchingjashed line are results from the wave-packet method with the initial and the
and folding by the velocity field. Figure 15 shows a well continuous input of passive scalar wave packets, respectively. The dotted
developed passive scalar field with a diffusivityz 25 line is for a smaller diffusion coefficientq=1.0>_< 10°S. _(b_)_Thg solid line is )
X10°°. The power specirum of the passive Scalar is meal™ [ o 1 waie packet metiod wi e ntel nputof pesse
sured during the simulation at every 2.5 time units. The timgesylt from Eq.(13) (multiplied by an arbitrary constant
averaged spectrum is obtained by averaging these instanta-

neous spectra.

k

N passive scalar wave packets are injected initi@lycontinu-
(F(k)=2, Fik )&, (34  ously uniformly over the space investigated. Initial wave
=1 vectors for passive scalar wave packets are sef2fo0)

where the weighting facto¢;=1/{dk F(k,t;), tj=Ty=+(i which corresponds to the major wave vector of the source
—1)AT, AT=2.5, andi=1,...,17.T, is selected to be large function for the full numerical computations in E@L).
enough to give full development of the passive scalar spec- The obtained power spectra of the passive scalar are
trum in the viscous-convection range. Here we chobge shown in Fig. 16a). The solid line is the time integrated
=30 (assumingk~ k,e{™* with the measuredh)~0.208,k  passive scalar power spectrum obtained from Eida),
becomes~1.0x 10* by the timet=T,=30, which is much whereF, is obtained by initially starting with a large number
bigger than the cutoff wave numbeiThe diamonds in Fig. of passive scalar wave packets. The dashed line is the power
16(a) show the time averaged spectryf(k)). spectrum computed from Eq&b)—(9) for the case when the

The power spectrum of the passive scalar is also obpassive scalar wave packets are continuously injected to the
tained using the wave-packet method. The derived velocitgystem at lowk. For the second case, the power spectrum is
field from solution of(31) is used for the advection of the obtained by a time average of the instantaneous power spec-
passive scalar wave packets. Since, with the given viscosityrum overT=[30,300. The diamonds are from full numeri-
the velocity field can be calculated in fairly coarse resolutioncal integration of4). For all these cases, the same diffusivity
(32x32 or 64x64), to increase the computational efficiency k=2.5x10 ° is used. We find very good agreement be-
without losing the details of velocity field, a linear interpo- tween the full numerical simulation of passive scalar advec-
lation between grid points is utilized to obtaif(X) and tion [diamonds in Fig. 1&)] and the two results from the
Vo (X) for any location of a passive scalar wave packet. Thevave-packet method. The deviation at low wavenumbers is
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numbers is not well approximated in the wave-packet ap-, perature in turbulent fluid,” J. Fluid Mecfs, 113 (1959.

proximation. The dotted line in Fig. 18 is the case when a
smaller diffusivity coefficient k=1x10°) is used for a

wave-packet method simulation with the same flow. When

the diffusion coefficient is low, Batcheloris ! law is very
clearly observed over a large rangekirbefore the roll-off
due to diffusivity. In Fig. 16b), the power spectrum from
Eq. (16) (dashed lingis compared to the result of the wave-
packet simulation109 (solid line). The agreement among

these results is good, but there is significant deviation from

Batchelor’s formula13) (dotted ling.
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