
Special Issue: Human Genetics

Review
Single-Cell Analysis in Cancer
Genomics
Assieh Saadatpour,1,2 Shujing Lai,3 Guoji Guo,3,* and
Guo-Cheng Yuan1,2,4,*

Genetic changes and environmental differences result in cellular heterogeneity
among cancer cells within the same tumor, thereby complicating treatment
outcomes. Recent advances in single-cell technologies have opened new
avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell
types, measure mutation rates, and, ultimately, guide diagnosis and treatment.
In this paper we review the recent single-cell technological and computational
advances at the genomic, transcriptomic, and proteomic levels, and discuss
their applications in cancer research.

Cancer is a Disease of Multitudes
Cellular heterogeneity, which results from mutation, differences in gene regulation, stochastic
variation, or environmental perturbations, is reflected at the genomic, transcriptomic, and proteo-
mic levels. Such heterogeneity is increasingly appreciated as a factor of cancer treatment failure
and disease recurrence, because a treatment that targets one tumor cell population may not be
effective against another [1]. Not only is cancer itself a complex disease made up of a collection of
individually distinct pathologies, but also within each tumor there is significant heterogeneity among
different cells. Current theories propose that cancer development involves both a process of clonal
evolution from mutated cells of origin and a differentiation hierarchy from cancer stem cells [2]. It is
increasingly clear that traditional bulk experiments, which only measure the average profile of the
population, have limitations in characterizing complex diseases such as cancer.

Single cells have been studied since the invention of the microscope, but it is not until recently
that genome-scale approaches have been applied to single-cell biology [3–7]. For example,
microfluidic-based single-cell sorting methods [8,9], high-throughput multiplexed quantitative
PCR (qPCR) [10–14] or sequencing approaches [15–23], mass cytometry-based proteomic
strategies [24–26], and data analysis methods [27–30] provided an unprecedented opportunity
to identify rare cell types, such as cancer stem cells, and to investigate the dynamic processes of
cell fate transitions.

One of the important application areas of single-cell analysis is in cancer genomics (Figure 1, Key
Figure). Recently, several studies have applied single-cell analysis to characterize the cellular
heterogeneity in different cancers [13,23,31–33]. The comprehensive knowledge about cellular
heterogeneity will not only provide fundamental insights into development and other biological
processes but also have important applications in therapy because drug resistance is often
caused by heterogeneous response at the cellular level.

In this paper we review the recent technological and computational advances in single-cell
analysis, and discuss their applications in cancer genomics. We conclude by offering a personal
view of the potential challenges and future prospects for this field.

Trends
Recent advances in single-cell technol-
ogies have enabled researchers to pro-
file mutations and expression levels of a
large number of genes and proteins at
individual cells.

Developments of new computational
methods have greatly aided the cali-
bration, quantification, and interpreta-
tion of single-cell data.

Single-cell analysis has been applied to
study cancer initiation, variation, and
evolution and will have potentially high
clinical impact.
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Technological Developments in Single-Cell Analysis
Methods for single-cell measurement, such as flow cytometry [34], RNA fluorescence in situ
hybridization (FISH) [35,36], and dynamic profiling of fluorescent fusion proteins [37], were
developed years ago and are routinely used in modern labs. However, these traditional methods
provide limited information from single-cell samples because only a few genes or proteins can be
profiled at the same time. In the past few years a new wave of technologies has emerged in the
areas of single-cell isolation, nucleic acid amplification, and genomic/transcriptomic/proteomic
profiling (Table 1). These new methods have significantly increased the throughput and scale of
single-cell analysis.

Key Figure

An Overview of Single-Cell Cancer Genomics

Single-cell biology

Te
ch

no
lo

gy

Cancer

Com
puta�on

Dimensionality reduc�on

Lineage reconstruc�on

Network modeling

Clustering

Genomics 
Transcriptomics

Proteomics 

Epigenomics

Single cell isola�on

Sequencing

Figure 1. Single-cell technologies are used to generate genomic, transcriptomic, and proteomic data from cancer cells.
These data are analyzed by computational methods to identify clusters, lineages, and networks, which in turn generate
new biological hypotheses. Biological discoveries in turn guide the development of new technologies and computational
approaches. The figure also shows a schematic example with a heterogeneous cancer sample containing three cell types
(orange, blue, and purple). An integrated single-cell analysis is used to identify the cell types, lineages, and network
profiles.

Trends in Genetics, October 2015, Vol. 31, No. 10 577



One of the fundamental challenges in single-cell analysis is the amplification of a small amount of
initial nucleic acid material to reach the detection threshold level. Recently, significant technical
advances in whole-genome amplification (WGA) have been achieved to overcome this challenge
for single-cell genome analysis. Based on the protocols used for WGA, there are three main
categories of single-cell techniques. GenomePlex PCR [32] uses degenerate-oligonucleotide
PCR to amplify DNA from single cells. The method achieves low physical coverage, but the
amplification is uniform across the genome. It is therefore suitable for copy-number profiling in
single cancer cells [32]. Another popular single-cell WGA method, multiple displacement
amplification (MDA), uses bacteriophage F29 polymerase and random primers to amplify
DNA in a linear process through multiple displacement mechanisms [38,39]. This approach
generates long DNA products and achieves high-coverage amplification, and therefore is
suitable for the detection of point mutations at base-pair resolution. The MDA protocol was
first used in single-cell exome-sequencing studies to uncover the genetic landscape of cancer
cells [38,39], and was subsequently coupled with a microfluidic system to amplify genomes from
single human spermatozoa [40]. Multiple annealing and looping-based amplification cycles
(MALBAC) [41,42] is a new WGA method that uses quasi-linear pre-amplification to reduce
the bias associated with nonlinear amplification. In MALBAC, single-stranded amplicons gen-
erated through strand-displacement are used as templates to produce full amplicons, and then
the full amplicons form looped DNA to avoid exponential amplification. This approach achieves
high coverage and uniform amplification, and enables genome-wide detection of both single-
nucleotide polymorphisms (SNPs) and copy-number variations (CNVs) of a single cell. The
method has been applied to single SW480 cancer cells [41] as well as to human oocytes [42].

Another frontier with significant progress is single-cell transcriptomic analysis. Although there are
more copies of mRNA than DNA in single cells, this application faces its own difficulties in
quantification of different RNA species. To amplify the limited amount of mRNA in single cells,

Table 1. Advanced Single-Cell Technologies for Genomic, Transcriptomic, and Proteomic Analysis

Method Amplification Application Coverage Refs

Genomic Analysis

GenomePlex PCR Multiplexed PCR Copy number Low coverage [32]

MDA MDA Genome/exome High coverage [38,39]

MALBAC MALBAC Copy number/genome High coverage
and uniform
amplification

[41,42]

Transcriptomic Analysis

Single-cell qPCR Multiplexed PCR Transcriptome Targeted regions [11,13]

Tang et al. method PolyA tailing Transcriptome 30 Bias [17,18]

Smart-seq Template-switching Transcriptome Full-length [16]

CEL-seq IVT Transcriptome 30 Bias [45]

CytoSeq Multiplexed PCR High-throughput transcriptome Targeted regions [47]

inDrop IVT High-throughput transcriptome 30 Bias [48]

Drop-seq Template-switching High-throughput transcriptome 30 Bias [49]

Proteomic Analysis

Mass Cytometry N/Aa Proteomic analysis Targeted proteins [24]

MIBI N/A Proteomic analysis with
spatial information

Targeted proteins [58]

aNA, not applicable.
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several approaches have emerged. The poly-A tailing method uses terminal transferase to add
anchoring sequences to the 30 ends of the synthesized cDNA, so that each cDNA has two
primer binding sites for PCR amplification. The method was used in the first single-cell
microarray study [43] and in the first single-cell high-throughput mRNA sequencing
(mRNA-seq) study [17]. Sequence-specific amplification (SSA) uses multiplexed reverse tran-
scription and PCR (RT-PCR) to amplify hundreds of specific targets in single cells. This method
has a simple one-step protocol but is limited to analyzing only a small number of genes [11,13].
The Smart-seq amplification method is a widely used approach for full-length mRNA analysis of
single cells [16,21,44]. The method uses a protocol based on template-switching to anchor a
primer binding site at the 30 end of the cDNA. The cDNA is then amplified by PCR and
sequenced by Illumina sequencers. Smart-seq has high coverage across transcripts, and
enables identification of SNPs as well as different transcript isoforms. One limitation of Smart-
seq is that the efficiency for template-switching is low and thus it has difficulty in profiling poorly
expressed mRNAs. CEL-seq (single-cell RNA-seq using multiplexed linear amplification) adds
bacteriophage T7 promoters to the cDNA and utilizes in vitro transcription (IVT) to amplify
mRNA. The method also shows robust efficiency and sensitivity for single-cell transcriptomic
profiling [15,45]. By coupling IVT with a degenerate PCR-based approach, the recently
published DR-seq method was able to achieve integrated genome and transcriptome
sequencing at the same time from the same cell [46].

For all the aforementioned single-cell transcriptomic methods, a common drawback is the need
to handle each cell sample independently, which limits the throughput of the analysis and also
may inadvertently introduce human error. Very recent breakthroughs solve these problems by
high-throughput molecular barcoding of single cells in microwells or microdroplets before
sequencing-library generation [47–49]. The CytoSeq platform randomly deposits single cells
and transcript barcoding probes into an array of picoliter wells before cell lysis and reverse
transcription; any selection of genes can be amplified and analyzed from the barcoded cDNAs
[47]. The inDrop and Drop-seq strategies, however, separate thousands of single cells into
aqueous droplets, associate a different barcode to the RNAs from each cell, and sequence them
all simultaneously [48,49]. These massively-parallel barcoding strategies have significantly
increased the throughput of single-cell transcriptomic analysis.

The broad applications of single-cell genomic/transcriptomic analysis in the biomedical field
have also been supported by the rapid development of microfluidic devices. Microfluidic devices
help to automate the distribution, processing, and analysis of biological materials, and have
significantly increased the measurement throughput. Microfluidic devices have been used as the
basis for various single-cell technologies, such as the single-cell capture and amplification
platforms [44,49], as well as high-throughput single-cell qPCR analysis [13]. Because single-
cell analysis protocols are highly sensitive to technical errors induced by manual processing, the
accurate control provided by the microfluidic devices is a significant advantage. Microfluidic
devices also improve the sensitivity of single-cell assays by confining the reaction volume and
increasing the local concentration.

In comparison to the progress made in assaying nucleic acids, single-cell proteomic analysis is
much more challenging because, unlike DNA or RNA sequences, it is not possible to amplify
protein sequences using current technologies. Standard immunofluorescence methods have
been routinely used to analyze four markers at single-cell level. Highly multiplexed fluorescence
microscopic now allows analysis of up to 60 proteins in tissue specimens [50]. Notably, the
development of mass cytometry has dramatically increased the multiplexity of cytometry-based
analysis by labeling antibodies with isotopes [24]. This innovation resolves the problem of
spectral overlap that is common in normal flow cytometry. It is now possible to measure more
than 40 parameters in a large number of single cells in a short period of time.
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The methods discussed above require the isolation of cells from their in situ environment.
Recently in situ methods have been developed to preserve spatial information [51]. By compu-
tational integration of single-cell RNA-seq data with in situ RNA patterns, one can accurately infer
cellular localization within complex patterned tissues [52–56]. Similarly, mass cytometry can be
coupled with immunohistochemical data to obtain highly multiplexed proteomic information at
subcellular resolution [57]. Another method, termed multiplexed ion beam imaging (MIBI), uses
secondary-ion mass spectrometry to image antibodies tagged with isotopically-pure elemental
metal reporters [58]. Taken together, these technologies have greatly facilitated the systematic
analysis of gene and protein expression variability at single-cell resolution.

Computational Methods for Analyzing Single-Cell Data
With the technological breakthroughs that have generated large amounts of high-throughput
single-cell data, the development of novel computational tools has become an integral part of the
analysis. Single-cell technologies present a number of challenges that cannot be addressed by
traditional computational methods. First, each cell is typically measured only once, and thus
there are no technical replicates in the strict sense. Second, the amount of starting material is
subject to strong stochastic variation. Still at an early stage, several computational methods have
been developed to address these issues (Figure 2).

Preprocessing and quantification are the first steps of any large-scale data analysis. The purpose
of these steps is to convert raw data to quantitative biological information. Significant effort is

Preprocessing

Visualiza�on

Clustering

Quality control

Normaliza�on

Confounding factors removal
(scLVM, etc.)

Heat map

Dimensionality reduc�on
(PCA, t-SNE, viSNE , Probabilis�c
 PCA, Diffusion maps, etc.)

Generic methods
(Hierarchical, K-means, etc.)

Specific methods
(ACCENSE, SNN-Cliq, MCA,
Citrus, etc.)

Lineage inference Network modelingDifferen�al expression
(SCDE, MIMOSA, etc.)

With temporal informa�on
(SCUBA, etc.)

Without temporal informa�on
(SPADE, etc.)

Time inference
(Principal curve, Wanderlust,
Monocle, etc.)

Coexpression networks
(WGCNA, etc.)

Dynamic models
(Boolean, etc.)

Gene regulatory networks

(ACCENS
Citrus, et

Figure 2. A Typical Flowchart for Single-Cell Data Analysis. Representative methods are mentioned. See the main
text for detailed description.
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paid to the estimation and removal of systematic biases due to technical variability. A major issue
in single-cell analysis is that technical variation is always confounded with biological variation.
One simple approach to estimate technical variability compared the pooled sample with bulk
RNA-seq experiments [59]. More precise calibration can be achieved by adding spike-in RNA to
the library as a control, followed by building an error model based on the variation of the spiked-in
RNA [60,61]. Methods that account for single-cell specific noise, such as dropout events and
amplification biases, can also help to separate technical and biological variability of individual
genes [62]. Recently, scLVM (single-cell latent variable model) [63] was developed to account for
the confounding effects of the cell cycle on modulating differentiation and gene expression
profiles. Another approach to estimating reproducibility is to divide the RNA material from a
single cell into two equal fractions which are then analyzed independently [20]. A recent review
article [64] has provided a detailed survey of the computational methods and, in particular, the
normalization steps for single-cell RNA-seq data from counts to expression values, with or
without unique molecular identifiers. For single-cell qPCR data, normalization to an endogenous
control is not usually recommended due to the biological variation and transcriptional noise
exhibited by single cells [65]. It was shown that normalizing by the median Ct (threshold cycle)
reduces variability in single-cell qPCR data [65]. For mass-cytometry data, technical variations
can be corrected with bead standards [66]. Normalization methods for CNV detection based on
channel, genome composition, and recurrent genome artifact corrections have also been devel-
oped [67]. A pipeline of the computational approaches to correct for biases in the WGA procedure
and accurately determine copy-number profiles has been presented before [68].

The high dimensionality of single-cell data provides a challenge for visualization. Several
dimensionality-reduction approaches are available to map the datapoints into a lower-dimen-
sional space while maintaining the single-cell resolution. The conventional principal component
analysis (PCA) has been used to visualize single-cell data in different contexts [13,24,69]. Despite
its success, this method relies on a linear assumption, and thus cannot fully capture the nonlinear
relationships inherent in many single-cell datasets. This limitation can potentially be overcome by
using a wide variety of non-linear methods [27,30,70–73], although the performance of each
method is likely to be context-dependent. The t-distributed stochastic neighbor embedding (t-
SNE) method [72,73] preserves both the global layout and local structure of the high-dimen-
sional data by converting the Euclidean distances between each pair of datapoints into heavy-
tailed conditional probabilities. A distributed implementation of the t-SNE algorithm, termed
viSNE [27], has been employed to visualize single-cell mass cytometry data. Another approach
based on the Gaussian process latent variable model generates a smooth mapping from the
latent space to the original data space [71]. This method was extended to a probabilistic PCA
approach to account for the censoring effect due to undetected transcripts [70]. More recently, a
dimensionality-reduction approach based on diffusion maps was adapted to identify and
visualize hematopoietic developmental progression in mouse embryo [30]. In this approach,
the cells are related to each other through a gradual but stochastic, diffusion-like process. All
these methods can help to interrogate the relationships among different cell types in a lower-
dimensional space.

Unsupervised clustering is a widely used approach to group samples with similar properties,
which can be used for identifying previously unknown subpopulations from single-cell data. In
addition to the classical clustering methods, several approaches have recently been developed
to analyze single-cell data. For example, ACCENSE (automatic classification of cellular expres-
sion by nonlinear stochastic embedding) [74] combines the t-SNE algorithm with density-based
partitioning without the need to pre-specify the number of target clusters. Another recent effort in
this direction is SNN-Cliq [75], which achieves clustering of single-cell transcriptomic data by a
graph theory-based algorithm. For low-dimensional single-cell expression data emerging from
qPCR or FACS, multiresolution correlation analysis (MCA) [76] can be useful in identifying
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subpopulations based on local pairwise gene correlations. In an effort to improve traditional
manual gating in flow cytometry data, Citrus [77] was developed, which identifies stratifying
subpopulations of cells whose abundance or behavior correlates with a known endpoint of
interest.

Having identified the cell subpopulations, one can determine the sets of genes that best
discriminate these subpopulations. In addition to the standard differential expression tools
for bulk experiments, new methods have been developed to address the specific challenges
in single-cell data analysis. For example, SCDE (single-cell differential expression) uses a
Bayesian approach that accounts for the likelihood of dropout events in single-cell RNA-seq
data [62]. In another approach, MIMOSA (mixture models for single-cell assays) employs a
mixture model where information is shared across subjects through exchangeable priors,
allowing an increase in the power to detect true differences [78].

Although clustering approaches reveal the underlying group structure within the data, they
cannot provide information on the lineage relationships between different developmental stages.
One method along this direction is SCUBA (single-cell clustering using bifurcation analysis) [28],
which first infers the cellular hierarchy using dynamic clustering and then models gene expres-
sion dynamics using bifurcation theory. However, the application of SCUBA requires temporal
information, which is often difficult to obtain experimentally. Computational methods have been
developed to infer temporal information from snapshot single-cell data, including using principal
curve analysis [79], and graph-model based algorithms such as Monocle [29] and Wanderlust
[80]. The inferred temporal information can then be used as the input to identify bifurcation
events [28]. However, it is challenging to accurately infer temporal information if the bifurcation
structure is complex. A related approach is SPADE (spanning-tree progression analysis of
density-normalized events) [24,81], which infers cell lineages without assigning temporal order.
In this case, additional biological knowledge is necessary to interpret the resulting tree structure.
Similar approaches have been developed to infer clonal structure using single-cell genomic data
[82].

Network modeling can provide mechanistic insights into the coordination of gene activities and
help in understanding the overall dynamics of the system. Efforts are underway to apply
network-modeling approaches to single-cell data. A simple but popular approach is to construct
networks based on coexpression data. For example, an approach, termed weighted gene
coexpression network analysis (WGCNA) [83,84], uses a soft threshold for modeling coex-
pression and also identifies network modules (i.e., genes with coordinated activities). Coex-
pression networks have been applied to single-cell analysis of the mammalian embryonic
development [19], hematopoiesis [14], neural stem cells [85], and leukemia [33,86]. Although
network analysis provided novel insights in these studies, existing methods are applicable only if
the sample size is sufficiently large, and are therefore not directly applicable to studying networks
associated with rare cell types. In addition, correcting for latent confounding factors in single-cell
data can help to reduce false positive links in these networks [63,87]. Coexpression networks
can also be integrated with other types of data, such as chromatin precipitation combined with
high-throughput sequencing (ChIP-seq) data, to estimate the underlying gene regulatory net-
work [10]. Most network models are only a static representation of the system and do not
explicitly consider the underlying gene expression dynamics. Building self-contained dynamic
network models is challenging, although there are some approaches, such as Boolean net-
works, that have been applied to study stem cell differentiation processes [30,88].

Taken together, these computational methods have greatly enabled researchers to systemati-
cally extract quantitative information from the single-cell data, thereby playing an important role in
applying single-cell technologies to investigate biomedical problems.
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Applications in Cancer Genomics
Genome instability is a hallmark of cancer. Spatial and temporal knowledge of the cancer
genome will have a significant impact on identifying cancer subtypes and developing patient-
specific treatment strategies. A notable application of single-cell genome sequencing is in
inferring tumor evolution paths. For example, single-cell genome sequencing applied to two
human breast cancer cases suggested that tumors grow by punctuated clonal expansions with
few persistent intermediates [32]. Another study on a thrombocythemia patient uncovered the
likely monoclonal origin of this neoplasm [38]. Compared to the widely used bulk-sequencing
methods, single-cell cancer genome analysis has the advantage of characterizing intratumor
cellular heterogeneity. For example, it has been used to map the intratumoral genetic landscape
in kidney cancer [39], colorectal cancer [31], and leukemia [82]. Another intensely researched
area is the detection and sequencing of circulating tumor cells (CTCs) either for understanding
the metastatic process or for early tumor detection. For example, a study on the reproducibility of
CNV patterns in CTCs of lung cancer patients suggested that CNVs at specific genomic loci are
selected for during cancer metastasis [89]. A recent whole-exome sequencing of CTCs provided
insights into the mutational landscape of metastatic prostate cancer [90]. Recently, a high-
coverage, whole-genome/exome single-cell sequencing method (Nuc-seq) was developed and
applied to breast cancer data wherein a large number of subclonal and de novo mutations were
found, suggesting that point mutations evolved gradually over long periods of time [91]. In
another study, by using single-cell whole-exome sequencing in multiple myeloma, it was
demonstrated that the disease develops through a branching and parallel evolutionary pattern,
where two divergent clones independently acquired the same convergent phenotype [92].

Single-cell transcriptomic advances in cancer research are also notable. For example, by using
single-cell qPCR analysis in human colon cancer, it was found that multi-lineage differentiation
represents a key source of in vivo functional and phenotypic cancer cell heterogeneity [13]. The
Smart-seq method was used for profiling full-length mRNA from single cells wherein, by
analyzing CTCs from melanomas, distinct gene expression signatures as well as alternative-
splicing events specific to the disease were identified [16]. A recent single-cell qPCR analysis of a
mouse model of acute myeloid leukemia identified two subpopulations of leukemic cells, each
characterized by distinct coexpression networks [33]. Another study using single-cell RNA-seq
analysis in five primary glioblastomas (GBs) revealed that current GB classifiers are variably
expressed across single cells within a tumor, suggesting that single-cell data can capture the
true diversity of transcriptional subtypes within a tumor that cannot be detected by population-
level data alone [23].

Single-cell proteomic approaches, ranging from flow cytometry to mass cytometry and multi-
plexed imaging, have also made great contributions to cancer research [27,57,58,93,94]. For
example, an application of the viSNE approach to mass cytometry data on healthy and leukemic
bone marrow samples showed that, although the maps of healthy samples overlap, the leukemic
samples from different patients form distinct populations from healthy bone marrow and from
each other [27]. Moreover, integration of mass cytometry with multiplexed imaging techniques
on breast cancer samples revealed substantial tumor microenvironment heterogeneity [57,58].

All these examples demonstrate that single-cell technologies provide a powerful approach to
study the diversity and evolution of single cancer cells, which can ultimately be applied to the
clinic from early detection to identifying therapeutic strategies for cancer patients.

Concluding Remarks and Future Perspectives
Single-cell analysis is still a new field, and several significant challenges lie ahead (see Out-
standing Questions). A major goal for technological development is to improve the throughput
and accuracy of the assays while reducing the cost. Promising results have been obtained by the

Outstanding Questions
How can single cells be isolated while
maintaining the temporal and spatial
information?

How can technical variations be distin-
guished from biological variations in
single-cell data?

How can mechanistic studies be inte-
grated with single-cell gene expression
data?

How can single-cell data be used in
clinical decision-making?

Trends in Genetics, October 2015, Vol. 31, No. 10 583



recent development of several approaches such as massive barcoding, microwells, and micro-
droplets [47–49]. Most technologies for single-cell analysis require the destruction of cells, and
thus the temporal information is lost during the process. Along these lines, live-cell imaging
technologies have generated exciting results [95]. Similarly, isolating single cells from a tissue
results in loss of information about the spatial context, imposing a barrier for investigating the role
of microenvironmental factors in gene regulation and cell fate decisions. This issue is especially
problematic for studying tumor progression, which is known to depend heavily on its interaction
with the microenvironment. In this direction, several promising approaches have been devel-
oped as discussed above [51–56]. Similarly, methods for single-cell epigenomic profiling are still
underdeveloped, although some promising strides have been made [96–100]. Further develop-
ments in this area would help to dissect the role of DNA methylation heterogeneity in cancer cells.
Ideally, this would involve the measurement of gene expression, chromatin states, and DNA
methylation states in a single cell to elucidate the precise regulatory mechanisms at single-cell
resolution. However, such an integrated approach will require applying multiple measurement
platforms to the same molecule without alteration of its properties, a task that seems to be
daunting if not impossible.

Computational method development is an integral component of every new technology.
However, single-cell analysis presents unique challenges that require not only incremental
changes but also revolutionary breakthroughs. Each analytical pipeline begins with extracting
the signal from raw data, which requires the identification and correction of systematic technical
noise to properly calibrate different samples and batches. For single-cell analysis, it remains
challenging to distinguish technical variations from biological variations [60–63]. Rare cell types,
by definition, consist of a small cellular population and may be detectable only in a relatively large
cellular population. It is difficult to distinguish them from technical artifacts because traditional
clustering algorithms, which favor robustness, tend to identify large subpopulations. Another
challenge is to distinguish transient variations, such as those caused by stochastic noise or
regular cell cycle variation, from those that are essential for cell identity. Integration analysis of
gene expression data with chromatin states and transcription factor binding information has
been very useful for understanding the underlying gene regulatory networks. However because it
remains difficult to map chromatin states and transcription binding at single-cell resolution, it is
important, but challenging, to develop novel computational methods to integrate single-cell gene
expression data with population level datasets. Perhaps most importantly, substantial efforts will
be necessary to improve single-cell technologies and computational methods for these to have
direct implications in clinical decision-making.

Despite these challenges, single-cell analysis undoubtedly presents tremendous opportunities.
Taken together, applications of single-cell analysis will greatly enhance the power of systematic
characterization of cancer heterogeneity and lead to mechanistic insights into cancer progres-
sion, which ultimately will aid the development of novel therapeutic strategies, help us to better
understand the mechanisms of drug resistance, and lead to improvement of clinical outcomes.
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