
Introduction to Programming and
Statistical Modelling in R

Course Website: http://isites.harvard.edu/icb/icb.do?keyword=k91599

HARVARD SCHOOL OF PUBLIC HEALTH, BIO503

JANUARY 2013

Aedin Culhane
Email: aedin@jimmy.harvard.edu

http://www.hsph.harvard.edu/research/aedin-culhane/
http://bcb.dfci.harvard.edu/˜aedin/courses

http://isites.harvard.edu/icb/icb.do?keyword=k91599
http://www.hsph.harvard.edu/research/aedin-culhane/
http://bcb.dfci.harvard.edu/~aedin/courses


Contents

1 Getting started with R 2
1.1 R Software: Obtaining R and RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 First R Encounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Interupting and Quiting R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Use Arrows to key browse command history . . . . . . . . . . . . . . . . . . . . . 3

1.3 Getting started: R as a big calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Basic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Comparison operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Help with functions and features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.1 R functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.2 Web resources for R help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 Transitioning from SAS or SPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 A few important points on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Working with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9.1 Defining a working directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9.2 Navigating folders in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9.3 Saving, Loading R workspace and history . . . . . . . . . . . . . . . . . . . . . . . 15

2 R Interfaces: Using R and RStudio 16
2.1 R Software: Obtaining R and RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The default R interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Default R Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Default R Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 R Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 RStudio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 R Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 R Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 R Workspace, history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Files, Plots, Packages, Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Projects, SVN in RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Example Datasets in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 R Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Installing new R libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Installing packages in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



2.6.2 Installing packages using RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Commands to install packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4 Package help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.5 Load package into workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Customizing R Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.1 R Studio Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Rprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Objects in R 28
3.1 Using ls and rm to managing R Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Types of R objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.6 ordered factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.7 array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Attributes of R Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Creating and accessing objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Modifying elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Sorting and Ordering items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Sort a matrix by 2 columns,one in decreasing order, the second ascending . . . . . . 40
3.5.3 Creating empty vectors and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.4 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Quick recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Reading and writing data to and from R 46
4.1 Importing and reading text files data into RStudio . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Importing data using R command read.table() . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Using read.table() and read.csv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Reading compressed data into R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Importing text files Using scan() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Parsing each line - Readlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Writing Data table from R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Other considerations when reading or writing data . . . . . . . . . . . . . . . . . . 52

4.5 Viewing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 head, tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 The function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.4 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Importaing Data from other Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7.1 Reading data from Excel into R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Import/Export from other statistical software . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ii



4.8.1 Reading data from SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.2 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8.3 Stata or Systat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 From a Database Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 Sampling and Creating simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.11 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Introduction to programming and writing Functions in R 65
5.1 Why do we want to write functions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Conditional statements (if, ifelse, switch) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 if statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 ifelse statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 switch statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Repetitive execution: For and While loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 For loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 while loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 The Apply Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Merging Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Functions for parsing text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7 Programming in R: More advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 Viewing Code of functions from R packages . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8.1 Making scripts work across your computers or platforms . . . . . . . . . . . . . . . 77
5.8.2 Efficient For Loop in R (Use apply) . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.8.3 Handling missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9 Exercise 6: Parsing Real Data - World Population Data from Wikipedia . . . . . . . . . . . 80
5.9.1 Writing functions: More on arguments . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10 Writing functions: more technical discussion -Scoping . . . . . . . . . . . . . . . . . . . . 81
5.11 Options for Running memory or CPU intensive jobs in R . . . . . . . . . . . . . . . . . . . 83

5.11.1 Distributed computing in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.11.2 Running R in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Efficient R coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.12.1 What is an R script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.12.2 What a script should look like ;-) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.12.3 Coding Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.12.4 Debugging R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.12.5 End-User Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.12.6 system.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.12.7 Etiquette when emailing the R mailing list . . . . . . . . . . . . . . . . . . . . . . . 88

6 Introduction to graphics in R 91
6.1 The R function plot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Arguments to plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Other useful basic graphics functions . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Customize plot with low-level plotting commands . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Default parameters - par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Interactive plots in R Studio - Effect of changing par . . . . . . . . . . . . . . . . . 114

iii



6.4.2 R Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.3 More Colors Palettes; RColorBrewer . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Interacting with graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.1 Exercise 8 - Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Saving plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.1 Rstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.2 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.3 Difference between vector and pixel images . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Useful Graphics Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Advanced Graphics 127
7.1 Advanced plotting using Trellis; ggplots2, Lattice . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 ggplots2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.2 lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.1.3 Examples that Present Panels of Scatterplots using xyplot() . . . . . . . . . . . . . . 138
7.1.4 Simple use of xyplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 GoogleVis and GoogleMaps visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.1 Geocodes and maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Graph theory and Network visualization using R packages network and igraph . . . . . . . . 153
7.4 Tag Clouds, Literature Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5 Other visualization resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.6 Summary on plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Statistical Analysis, linear models and survival analysis in R 159
8.1 This section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2 Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.1 Continuous Data: t test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2.2 adjusting for multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.2.3 Continuous Data: One- and two-way analysis of variance . . . . . . . . . . . . . . . 163
8.2.4 Discrete Data: Contingency Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.2.5 Common statistical Tests in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3 Model formulae and model options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3.1 Model formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.3.2 Example of linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.3 Contrasts, model.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4 Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.5 Output and extraction from fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.6 Exercise 10 :Multivariate linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.6.1 Residual plots, diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.6.2 ANOVA and updating models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.6.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.7 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.8 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.8.1 Linear Regression: Weighted Models, Missing Values . . . . . . . . . . . . . . . . 187
8.8.2 Generalized linear modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.8.3 Other packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.9 Survival modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.9.1 Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

iv



8.9.2 Kaplan-Meier curve estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.9.3 Cox proportional hazards model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.10 Exercise 11: Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9 Data summaries (including SAS style) 201
9.1 1,2 and 3-way Cross Tabulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.1.1 Contingency Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10 Exploratory Data Analysis 212
10.1 Hierarchical Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.2 Principcal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.3 Multivariate methods for exploring covariance across multiple data sets . . . . . . . . . . . 217

11 Writing Reports and Reproducible Research 220
11.1 Stitch and Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.2 Sweave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

11.2.1 Converting an Rnw file in Sweave to Knitr . . . . . . . . . . . . . . . . . . . . . . 221
11.3 knitr, knit, purl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.4 Creating Markdown Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

11.4.1 Converting markdown to other file formats including MSOffice . . . . . . . . . . . 222

12 Solutions to Exercises 223
12.1 Solution to Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.2 Solution to Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.3 Solution to Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
12.4 Solution to Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
12.5 Solution to Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.6 Solution to Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
12.7 Solution to Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.8 Solution to Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.9 Solution to Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.10Solution to Exercise 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.11Solution to Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
12.12SessionInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

v



R set up script for this manual
We will run this course with R>2.15 and RStudio 0.97.

To ensure you have all of the packages needed to run this course, either

1. install course R package (available on the course website)

2. source the following commands into your R session

pkgs<-list("lme4","xtable","xlsx","RODBC","Hmisc",
"SAScii","R2HTML","BiocInstaller","plyr",
"RColorBrewer","lattice","ggplot2","googleVis",
"network","igraph","vcd","MASS","survival",
"venneuler", "gplots", "ggmap", "knitr",
"markdown","tm", "wordcloud", "ade4", "gmodels",
"XML", "XLConnect", "scatterplot3d", "manipulate",
"KernSmooth", "foreign")

Biocpkgs<-c("parallel", "annotate")

checkPkg<- function(x) {
print(x)
if (!x%in%installed.packages()[,1])
install.packages(x)

}

checkBioCPkg<- function(x) {
print(x)
require(BiocInstaller)
if (!x%in%installed.packages()[,1])

biocLite(x)
}

lapply(pkgs, checkPkg)
lapply(Biocpkgs,checkBioCPkg)

search()

This script checked to see if you have installed each package on your computer. If it is installed, its loads
the package into your R session. If it is not installed, it downloads the package from CRAN or Bioconductor
and installed it.

The function search lists the packages that are loaded into your current R session. We’ll talk more about
packages, how to install them and how to load them during the course.
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Chapter 1

Getting started with R

1.1 R Software: Obtaining R and RStudio

R can be downloaded from the website: http://cran.r-project.org/. R is available for all
platforms: Unix/Linux, Windows and Mac. In this course we will also use RStudio an interface to R.
RStudio can be obtained from www.rstudio.org). RStudio is available as a desktop program for all
platforms Unix/Linux, Windows and Mac. There is more information about installing R in Chapter ??.

If you don’t want to install R on your own machine, or tie up your own machine, with a memory or CPU
intensive task. You can run R through web server or even in the Cloud. Its really simple to run R jobs in the
Amazon cloud as described in Section 5.11 and these can be run through the RStudio interface, which looks
exactly as it does on the desktop version.

In this course, we will concentrate on the Windows implementation of R. The differences between the
platforms are minor, so most of the material (R, RStudio) is applicable to the other platforms.

1.2 First R Encounter

When you start R, and see the prompt > , it may appear as if nothing is happening. But this prompt is
now awaiting commands from you. This can be daunting to the new user, however it is easy to learn a few
commands and get started

demo()

Note we place round brackets after all functions ALWAYS.
If the brackets are empty () it runs the function with default parameters. To specify a parameters these

are inserted into the brackets. For example to run a demo on a specific topics we give that parameters to
demo

demo(graphics)
demo(nlm)

Demo will run through each example, hit return to view each, once it is done you will see the command
prompt > again.

Note if a command is not complete on one line (missing close bracket or quote), R will use continua-
tion prompt ’+’
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To find out more about parameters and options for the function demo, lets look at help for demo. To get
help simply use the command help or type a question mark ? before the command

help(demo)
`?`(demo)

1.2.1 Interupting and Quiting R

If you wish to interupt a job, press the ESC key in windows or MacOS or click on the ”stop sign” (its red).
On linux press ctrl-C which interupts R without terminating it.

If you wish to exit R, you can click on the red X in the upper corner of the window frame (Windows),
press CMD-q (MacOS) or Ctrl-D (Linux). On all platforms, you can type

q()

It will ask you if you wish to save the workspace image, and gives you three choices y/n/c.

• y Save workspace and exit

• n Don’t save workspace, but still exit

• c Cancel, returning to R session (command prompt) and don’t exit

We’ll talk more about the workspace later, for now just press c but at least you know how to exit should
you wish to.

1.2.2 Use Arrows to key browse command history

Note you can recover or browser previous commands using the up and down arrow keys.
To demonstrate this, use the function rnorm to generate random numbers from a normal distribution.

Repeat this a several times (hint: the up arrow key is useful). To learn more about rnorm, type ?rnorm

rnorm(5)
rnorm(5)
rnorm(10)
rnorm(10, mean = 5, sd = 2)

If you wish to generate the same set of random numbers each time, you could set.seed(10)
You can view previous expressions entered into the R session using the function history. By default only

25 expresssion are show, if you wish to see more type the number as an argument to the function history.

history()
history(50)

Browsing, saving and searching is discussed in more detail later in section refsec:history. In Rstudio you
can also view expression history in the history tab on top right panel (see section refsec:RStudioHistory for
further details.
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1.3 Getting started: R as a big calculator

Type the following into an R session (or copy and paste from this document).

2 + 2
2 * 2
2 * 100/4
2 * 100/4 + 2
2 * 100/(4 + 2)
2ˆ10
11%%2 #modulus
log(2)
log(2, base = 2)

Each of these are called ”expressions”. When you type an expression into R, R evaluates the code and
prints the results. The result is not stored or saved to a file. In order to manuiplate expressions we need to
assign the result of an expression to a variable.

1.4 Assignment

Even in the simple use of R as a calculator, it is useful to store intermediate results.Lets store the value of
(tmpVal=log(2) in a symbolic variable tmpVal.

tmpVal <- log(2)
print(tmpVal)

## [1] 0.6931

tmpVal

## [1] 0.6931

exp(tmpVal)

## [1] 2

Note when you assign a value to such a variable, there is no immediate visible result. We need to
print(tmpVal) or just type tmpVal in order to see what value was assigned to tmpVal

• In summary elementary commands are either:

– expressions are evaluated, printed and value lost;

– assignments evaluate expressions, passes value to a variable, but not automatically printed

2 * 5ˆ2

## [1] 50
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x <- 2 * 5ˆ2
print(x)

## [1] 50

• Variables can be assigned using the assignment operators: '<-', '=', '->'

'<-' is the most popular assignment operator, and '=' is a recent addition.

It is '<-' (less than and a minus symbol)

There is no space between < and −.

When assigning a value spaces are ignored so 'z<-3' is equivalent to 'z <- 3'

y <- 2*5ˆ2 # Spaces are disregarded
z<-2*5ˆ2
2*5ˆ2 -> z # Using the -> operator is equivalent
print(y)

## [1] 50

y==z

## [1] TRUE

• Note ’=’ and ’==’ have very different uses in R. == is a binary operator, which test for equality (A==B
determines if A ’is equal to’ B ).

1.5 Basic operators

We already saw that == tests for equality or a match between 2 objects. Other operators are:

1.5.1 Comparison operators

• equal: ==

• not equal: !=

• greater/less than: > <

• greater/less than or equal: >= <=
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1 == 1

## [1] TRUE

1.5.2 Logical operators

• AND &

Returns TRUE if both comparisons return TRUE.

x <- 1:10
y <- 10:1
x > y & x > 5

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

• OR |

Returns TRUE where at least one comparison returns TRUE.

x == y | x != y

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

• NOT !

The ’!’ sign returns the negation (opposite) of a logical vector.

!x > y

## [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

These return a logical vector of TRUE or FALSE and can be useful for filtering (we will see this later)

1.6 Help with functions and features

There are many resources for help on functions (or commands) in R.

1.6.1 R functions

Within R, you can find help on any command (or find commands) using the following:

• help or ?

If you know the command type help or ?
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## help or ? will open a help page
help(lm)

# ?matrix
`?`(matrix)

• apropos

If you know part of the function name you can perform a search of all command to retrieve a list of
functions with a partial match. It is not case sensitive

The functions find() or apropos() will perform a search for a commands that partial match the input
argument

apropos("fish")

## [1] "fisher.test"

apropos("Fisher")

## [1] "fisher.test"

• Example

Almost all functions have an example, use the command to get an example of how to use the function

## The function example will run example of a command
example(rep)

This will run all the examples included with the help for a particular function. If we want to run
particular examples, we can highlight the commands in the help window and submit them by typing
CtrlV

• help.search or ??

If you don’t know the command and want to do a keyword search for it. For example we wished to
find the command to perform a Student’s t-test, we could perform a search of function help pages

help.search("Student")
help.start()
`?`(`?`(Student))

Note using the double question mark ?? or the command help.search are equivalent.

• RSiteSearch

The function RSiteSearch performs a key words search of R-help mailing list archives, help pages,
vignettes or task views at the website at http://search.r-project.org which is maintained
by Jonathan Baron and the School of Arts and Sciences of the University of Pennsylvania.

7

http://search.r-project.org


RSiteSearch("Student's t-test")

help.search will open a html web browser or a MSWindows help browser (depending on the your
preferences) in which you can browse and search R documentation.

1.6.2 Web resources for R help

There is a large R community who are incredibly helpful. There is a mailing list for R, Bioconductor and
almost every R project. It is useful to search the archives of these mailing lists. Frequently you will find
someone encountered the same problem as you, and previously asked the R mailing list for help (and got a
solution!).

• The R search engine http://www.Rseek.org

• R bloggers website http://www.r-bloggers.com/

In addition, there numerous useful resources for learning R on the web including the R project http:
//www.r-project.org and its mailing lists but also I recommend the following:

• Emmanuel Paradis has an excellent beginners guide to R available from http://cran.r-project.
org/doc/contrib/Paradis-rdebuts_en.pdf

• There is an introduction to R classes and objects on the R website
http://cran.r-project.org/doc/manuals/R-intro.html

• also see Tom Guirkes manual at
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual

• Tom Short’s provides a useful short R reference card at http://cran.r-project.org/doc/
contrib/Short-refcard.pdf

1.6.3 Transitioning from SAS or SPSS

If you come from a SAS or SPSS background, the following maybe useful to you

• In the December 2009 issue of the R Journal. Transitioning to R: Replicating SAS, STATA, and SU-
DAAN Analysis Techniques in Health Policy Data. Anthony Damico http://journal.r-project.
org/archive/2009-2/RJournal_2009-2_Damico.pdf

• SAS and R. A blog devoted to examples of tasks (and their code) replicated in SAS and R http:
//sas-and-r.blogspot.com/

• R for SAS and SPSS Users. Download a free 80 page document, http://rforsasandspssusers.
com/
R for SAS and SPSS Users which contains over 30 programs written in all three languages.
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1.7 Quiz

• Find a function that will calculate the mean and standard deviation.

• Get help on the function rnorm. What is the default mean and standard deviation of the random
normal distribution from which numbers are sampled?

• Draw 10, 100, 1000 number from a random normal distributionand assign these to the objects r10,
r100 and r1000 respectively.

– What is the mean of each?

– How would you draw the same random number each time?

• Are each of the following TRUE or FALSE

Q1

z <- 1:11
Z <- 2:22
z == Z

Q2

a <- LETTERS[1:5]
b <- c("a", "b", "c", "d", "e")
a == b
a[1] %in% b # x%in%y tests if x is a member of y

Q3

a <- 1:5
b <- a%%2 #%% is modulus
b == TRUE
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1.8 A few important points on R

– R is case sensitive, i.e. myData and Mydata are different names

x

## [1] 1 2 3 4 5 6 7 8 9 10

y

## [1] 10 9 8 7 6 5 4 3 2 1

Z <- 20
x == z

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

x == Z

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

– Comments can be put anywhere. To comment text, insert a hashmarh #. Everything following
it to end of the line is commented out (ignored, not evaluated).

print(y) # Here is a comment

– Quotes, you can use both ” double or ’ single quotes, as long as they are matched.

– For names, normally all alphanumeric symbols are allowed plus '.' and '_' Start names with
a character [Aa-Zz] not a numeric character [0-9]. Avoid using single characters or function
names t, c, q, diff, mean, plot etc.

– Arguments (parameters) to a function calls f(x), PROC are enclosed in round brackets. Even if
no arguments are passed to a function, the round brackets are required.

print(x)
getwd()

– Commands can be grouped together with braces ('{' and '}'). They can be separate by semi-
colon ; or on different lines

{
a <- 1
b <- 3
c <- "What the connection between the Students t-test and Guinness?"
print(a + b + 2)
print(c(a, b) + 2)
print(length(c))
print(nchar(c))

}

## [1] 6
## [1] 3 5
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## [1] 1
## [1] 61

– Note on brackets. It is very important to use the correct brackets.

Bracket Use
() To set priorities 3*(2+4). Function calls f(x)
[] Indexing in vectors, matrices, data frames
{} Creating new functions. Grouping commands {mean(x); var(x)}

[[]] Indexing of lists

– Missing values called represented by NA. For more on missing values see section 3.5.4.

– Inf and -Inf are positive and negative infite values respectively

1/0

## [1] Inf

-1/0

## [1] -Inf

– Sometimes a computation will create a value that doesn’t make sense returning an ’NaN’ value.
’NaN’ is ’Not A Number’

0/0

## [1] NaN

–

1.9 Working with R

When you begin your first project in R, you will need to know how to organize your R files and save
your R scripts and output.

1.9.1 Defining a working directory

The first thing to do when starting an R session, is to ensure that you will be able to find your data and
also that your output will be saved to a useful location on your computer hard-drive. Therefore, set a
”working directory”

Within R Studio, you can define a RStudio project folder is a great way to start a new project. It aids
with managing R code, data and results.

However even if you don’t use the project option or are accessing R through the default or another
interface, you still will need to be able to set a current working directory (in which all your output
files are saved).
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When I create a new working directory for an R project, I try to include a project Name and Date in
the folder name eg colonJan13.

Within this folder I incrementally name scripts for example S001prepData.R, S0002transform.R,
S003analysis.R, S004results.R etc. I also create a simple file which gives a brief description of each.
We have a lot more tips on scriting in R in section 5.12

There are numerous way to define the working directory in R. To change directory:

1. In the classic R interface. Use the file menu, to change directory File − > Change dir

2. If you start R by clicking on an R icon. You may wish to change the default start location by right
mouse clicking on the R icon on the desktop/start menu and changing the ”Start In” property.
For example make a folder ’C:/work’, and make this as a ”Start in” folder

3. In RStudio Tools − > Set Working Directory

4. Or in RStudio click on the Files tab (on the bottom right panel). Use the File browser window
to view the contents of a directory and navigate to the directory you wish to set as your home
directory.

– click on the triple dot icon on the top right. Navigate to the correct directory
– Once you are in the correct directory and see your data files click on the More (blue cog-

wheel), and select ”Set as Working Directory”

Figure 1.1: Viewing Files and Setting wkdir
Note the triple dot icon on the far right and the blue cog wheel

5. The commands to set the working directory.

# What is my current directory
getwd()

To change the directory:

# Set working directory
setwd("C:/work/colonJan13")

To see folders or files in the working directory, use the command dir() (or browse the files using
the Files Browser panel in RStudio)

dir()
dir(pattern = ".txt")

Important side note: R doesn’t like windows a back slash (\) that separate folders in a file path.
Indeed it will return a rather cryptic error
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> setwd("C:\Users\aedin\Documents\Rwork")
Error: "\U" used without hex digits
in character string starting "C:\U"

There are a couple of ways to prevent this, either replace backslash (\) with forward (/) slash or
double back slash (\\) The first back slash tells R to treat the character literally, it is called an escape
character which invokes an alternative interpretation on subsequent characters.

setwd("C:/Users/aedin/Documents/Rwork")
setwd("C:\\Users\\aedin\\Documents\\Rwork")

Using all those slashes can be rather tedious. A nicer way to make scripts work across platform is to
define directories in a more generic way.

The R command file.path will automatically add in the correct ”slashes” for windows, mac or Linux

file.path("˜", "Documents", "Rwork")

## [1] "˜/Documents/Rwork"

Here the tilde symbol (˜ ) which is the shortcut to your home drive (on any operating system). These
is more details about using these shortcuts in chapter 5.8.1

1.9.2 Navigating folders in R

If you are setting a working directory within a script, you may need to check a folder exisits or create
a new one. These can be achieved with the command file.exists and dir.create respectively

# check if the directory or file exisits
file.exists("colonJan13")
# Create a directoryfolder
dir.create("colonJan13")
setwd("colonJan13")

To create a full directory or more complex directory path. A path can be relative to the current location,
in this case two dots mean ”the directory above”

setwd("../../RWork/colonJan13")

Or you can specific a full directory path. For cross-platform compatibility, its best to use file.path()
to create paths. for example to set move the working directory to a folder called Project1 within the
current directory;

wkdir <- getwd()
subdir <- "Project1"
newdirPath <- file.path(wkdir, subdir)
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# If directory doesn't exist create it
if (!file.exists(newdirPath)) dir.create(newdirPath)
setwd(newdirPath)
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1.9.3 Saving, Loading R workspace and history

To finish up today, we will save our R session and history

1. Saving a R objects
One can either save one or more R object in a list to a file using save() or save the entire R
session (workspace) using save.image().

save(women, file = "women.RData")
save.image(file = "entireL2session.RData")

To load this into R, start a new R session and use the load()

rm(women)
ls(pattern = "women")
load("women.RData")
ls(pattern = "women")

2. Saving R history
R records the commands history of each R session. To view most recent R commands in a
session

history()
help(history)
history(100)

To search for a particular command, for example ”save”

history(pattern = "save")

To save the commands in an R session to a file, use savehistory()

savehistory(file = "L2.Rhistory")

3. Note you can also browse and search history in RStudio, really easily in the history window.
A really nice feature of this window is the ease of sending command either to the console (to
execute code again) or to Source (to a text file or script you are writing in the editor)

Figure 1.2: Browsing history in RStudio
You can easily save or search command history, send commands to the R console or a source (script) file

4. Default saving of RData and Rhistory
By default, when you quit q() an R session, it will ask if you wish to save the R workspace
image. If you select yes, it will create two file in the current working directory, there are .RData
and .Rhistory. These are hidden system files, unless you choose to ”Show Hidden Files” in the
folder options. There are output files are the same as running save.image(file=”.RData”) and
savehistory(file=”.Rhistory”) respectively.
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Chapter 2

R Interfaces: Using R and RStudio

2.1 R Software: Obtaining R and RStudio

R can be downloaded from the website: http://cran.r-project.org/. R is available for
all platforms: Unix/Linux, Windows and Mac. When you download R, its default editor and console
are relatively basic (we describe it below). In this course we will call R using RStudio which provides
a richer interface to R. RStudio can be obtained from www.rstudio.org). RStudio is available as
a desktop program for all platforms Unix/Linux, Windows and Mac.

I have additional online notes which give a very detailed description on downloading and installing R
(and Bioconductor).

When you download R, it will not over-write an existing installation of R, instead you get multiple
version of R, eg R2.14, R.15 etc. To get rid of an older version of R, simple uninstall it, each release
is stored its in own structure and is independent of previous releases. This has the advantage of easily
calling an older version of R (maybe to repeat an old analysis) but had the disadvanatge that when a
new version of R is released, the install is a longer process, as you have to install R and the packages
that you require. More about those later in this chapter. For now, lets look at the basic R software you
have installed.

2.2 The default R interface

After downloading R, click on the R icon. It will open the basic R interface. The windows or macOS
the R interface will pretty similar. The linux interface had fewer options and can be initaed using the
command

verbatim R -g Tk

• On the menu bar, there are the menus:

– File - load script, load/save session (workspace) or command history. Change Directory
– Edit - Cut/Paste. GUI preferences
– View
– Misc - stop computations, list/remove objects in session
– Packages - allows one to install new, update packages
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Figure 2.1: R interface
R interface with windows installation of R

– Windows
– Help - An essential resource!

• The icons below will allow one to

– open script (.R file),
– load image (previous R session, .RData file)
– save .R script
– copy and paste
– stop a computation (this can be an important button, but the ESC also works!)
– print.

2.2.1 Default R Console

The main window that you see in the R Console. This is where you type R commands. Note it says type
demo() or help() or q() to view example R in code, to see R help or to quit R respectively.

Within the R console, you can

• Type at the prompt > symbol.

• If the prompt instead show the continuation prompt is ’+’, it means the command you typed is incom-
plete and R is waiting for it to complete (usually its missing a closing quote or bracket)

• Use up and down arrow keys to scroll through previous commands. This is useful if you would like to
repeat a previous command

• R also includes basic automatic completions for function names and filenames. Type the ”tab” key to
see a list of possible completions for a function or filenames.
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2.2.2 Default R Editor

• Within R, one can open an editor using the menu command File -> New script

• Can type commands in the editor

• Highlight the commands and type CtrlˆR to submit the commands for R evaluation

• Evaluation of the commands can be stopped by pressing the Esc key or the Stop button

• Saving (CtrlˆS) and opening saved commands (CtrlˆO)

• Can open a new editor by typing CtrlˆN

2.2.3 R Shortcuts

Keyboard Shortcuts for traditional R GUI

• Ctrl + A: gets you to the beginning of the line

• Ctrl + E: gets you to the end

• Ctrl + K: wipes everything to the right of your cursor

• Esc: kills the current comment and takes you back to ¿

• Up Arrow: brings back last command you typed

• Down Arrow: brings back the next command (Up and down basically scrolls up and down through
your history)

Keyboard shortcuts for RStudio are listed online at http://www.rstudio.org/docs/using/
keyboard_shortcuts.
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2.3 RStudio Interface

RStudio is a free and open source integrated development environment for R. Those familiar with MatLab
will recognize the layout as its pretty similar. RStudio have a brief 2 minute guide to the interface on their
website http://rstudio.org/ which I recommend watching.

On start-up R Studio brings up a window with 3 or 4 panels. If you only see 3 panels, click on File ->
New -> New R Script.

Figure 2.2: RStudio interface
RStudio v0.96 interface with 4 panels

The first thing to notice, is that the bottom left panel ”console” is the exact same as the standard R
console. RStudio just loads your local version of R. You can specify a different version of R (if you have
multiple versions of R running on your machine) by clicking on Tools -> Options and selecting R
version.

2.3.1 R Console

RStudio has a nice console features

• start typing a command, for example fi, press the TAB key, it will suggest function that begin with
fi

• Select fis for fisher.test. Type

fisher.test(
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Figure 2.3: Pressing Tab to reveal function help
Tab not only auto-completes, but also suggests parameters and input to the function. Note it says press F1

for further help on this function

and then press the TAB key. You will notice it bring up help on each parameter, you can browse these
and it will help you get familiar with R.

• Press F1, it will bring up a help document about the function in the help panel (right bottom)

• Press F2, it will show the source code for function

There are many useful keyboard shortcuts in RStudio for a full list of these see http://rstudio.
org/docs/using/keyboard_shortcuts

2.3.2 R Editor

The top left panel is an editor which can be used to edit R scripts (.R), plain text (.txt), html web files or
Sweave (rnw) or markdown (md), the latter two of these can be converted to pdf files. There are several nice
features to this text editor which we will describe during the course. But for now note, that it highlights R
code, and that the code is searchable (click Control-F to search)

In the menu code, you can set preferences to highlight, indent or edit code.

2.3.3 R Workspace, history

On the top right there is a tab menu workspace and history. We will talk about these in detail.

• Workspace list the objects in the current R session. You can load, save or ”Clear All” object for a
workspace

• Note that under the workspace panel there is the option to Import Dataset
• The history panel lists all of the command that have been typed or input in the console. There are

options to load, save, search or delete history

• One can easily repeat a command by highlighting one or more line(s) and sending these To Console
• One can easily copy a command to a new R script or text file, by highlighting one or more line(s) and

sending these To Source

2.3.4 Files, Plots, Packages, Help

On the bottom right there is a tab menu Files, Plots, Packages and Help.
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• Files is a file browser, which allows you to create a new folder, rename a folder or delete a folder.
Click on the triple dot icon (...) on the far right on the menu to browse folders. Under the More menu
you can set your current working directory (more about that below). If you double click on a text, .R,
Sweave or html file it will automatically open in the Editor.

• The Plots window displays plots generated in R. Simply type the following command into the Console
window

plot(1:10)
plot(rnorm(10), 1:10)

It will create 2 plots. Use the arrows keys to browse plots, click on zoom, export or delete to manage
plots.

• Packages list all of the packages installed in your computer. The packages with tick marked are those
loaded in your current R session. Click on a package name to view help on that package. Note you
can install packages or check for updates. You can also search for a package or search package
descriptions using the search window.

• The Help menu provides an extensive R help. The arrows button go forward or back through recent
help pages you have viewed. You can go home (house icon), print or open help in new window. You
can search help, use the search window. Help can also be browsed through main menu bar at the open
of the page

2.3.5 Projects, SVN in RStudio

RStudio provides an easy approach to managing projects. In the main menu there is a Projects menu which
which will create folder for your project and retain all data files and command history for your project. It
is also possible to set up a backup subversion management control system for your code as RStudio will
directly communicate with your SVN or github account.

2.4 Example Datasets in R

Both the R core installation and contributed R package contain data sets, which are useful example data
when learning R. To list all available data sets:

data()

To load a dataset, for example, the dataset women which gives the average heights and weights for 15
American women aged 30-39.

data(women)
ls()
ls(pattern = "w")
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Figure 2.4: RStudio Viewing objects in R workspace
The Workspace windows lists the object currently in the R workspace. You can click on each item to view
or edit it. Note women is a data table with dimensions 15 rows x 2 columns, you can click on the table icon

to view it. Z and y are a single value (50). x and y are integer vectors of length 10.

2.5 R Packages

By default, R is packaged with a small number of essential packages, however as we saw there are many
contributed R packages.

1. Some packages are loaded by default with every R session. The libraries included in the Table are
loaded on the R startup.

Table 2.1: Preloaded packages
Package Description
base Base R functions
datasets Base R datasets
grDevices Graphics devices for base and grid graphics
graphics R functions for base graphics
methods Formally defined methods and classes for R objects,

plus other programming tools
stats R statistical functions.
utils R utility functions

2. To see which packages are currently loaded, use

search()
sessionInfo()

3. To see which packages are installed on your computer, issue the command

library()

22



Within RStudio installed packages can be view in the Package Tab of the lower right panel. You
can tick or select a library to load it in R.

Figure 2.5: RStudio- Viewing the list of all packages that are Installed loaded into a workspace
The list is all installed packages. A tick marked indicates its loaded into the current R session. Clicking on

the package name will open help for that package

You will very likely want to install additional packages or libraries.

2.6 Installing new R libraries

There are several thousand R packages and >500 Bioconductor packages (also called libraries) available.
These are not installed by default, so we have to select and install additional packages that will be of use to
us. Not all of them, actually a small subset, will be useful to us. R users are free to selected which libraries
to install.

2.6.1 Installing packages in R

Install packages using the basic R GUI using the drop-down menu Packages or command line (in-
stall.packages). First Click on “Packages” and “Set CRAN mirror” and choose an available mirror (choose
one close by, it’ll be faster hopefully). Then If you know the name of the package you want to install, or if
you want to install all the available packages, click on “install Packages”

Open a CMD shell and type

R CMD INSTALL packageName.tar.gz.
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You can open a CMD shell from RStudio Tools -> Shell or type ’cmd’ to run cmd.exe into the Start box
on windows

2.6.2 Installing packages using RStudio

Figure 2.6: Click on Install Packages

This will open an install window:

Figure 2.7: Type the name of the package. Unfortunately RStudio does not display a list of all available
packages

On windows, sometimes I have encountered problems with program installation using RStudio. This is
normally when R tried to write to a folder but doesn’t have write permission to this folder. To check this

1. Run RStudio as administrator

2. Or check you have write permission to the path where it will write the files (use the following R func-
tion to list your RStudio Paths) ¡¡rsPref, eval=FALSE¿¿= .rs.defaultUserLibraryPath() Path where
RStudio installs packages .rs.rpc.getpackageinstallcontext()OtherusefulRStudioconfigurationinfo@

2.6.3 Commands to install packages
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# Installing and updating R libraries
install.packages("lme4")
update.packages("lme4")

Installation of all packages takes some time and space on your computer. If the name of the package is not
known, you could use task-views help or archives of the mailing list to pinpoint one. Also look on the R
website Task views description of packages (see Additional Notes in Installation which I have provided).

To list all of the packages installed on your computer.

library() # List all installed packages
installed.packages()

/subsectionCreating an Install R packages script Its useful to create an install package script, to automate
package installation when you wish to update R to a new version.

The easiest way to do this is to take the list of currently install package and send to them to a script, similar
to that at the start of this manual in section

## before upgrading, save the list of current packages
pkgs <- installed.packages()[, 1]
write(pkgs, file = "MyPkgList.txt")

## To upgrade, download and install the new version of R
pkgs <- scan("MyPkgList.txt", what = "tt")
lapply(pkgs[1:2], install.packages)

Note if you have Bioconductor packages, the install is different. See the online manual on installing Bio-
conductor packages, and then use biocLite rather than install.packages to install Bioconductor packages.

2.6.4 Package help

To get an information on a package, type

library(help = lme4)

Many packages, particular those in Bioconductor have vignette documents which provide a case studies or
tutorial on the functions in a package

To see if a package has a vignette, either browse the package help in the Rstudio help window, or online
using help.search

## list vignettes associated with the package lme4
vignette(package = "lme4")

## open the vignette with the title Theory
vignette("Theory", package = "lme4")
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2.6.5 Load package into workspace

Once you have installed a package, you do NOT need to re-install it. To load the library in your current R
session use the commands

library(lme4) # Load a package
## Or the alternative
require(lme4)

To list all packages loaded in the current R session

sessionInfo()
search()

You can unload the loaded package pkg by

search()
detach(package:lme4)
search()

NOTE: Packages are often inter-dependent, and loading one may cause others to be automatically loaded.

2.7 Customizing R Start-up

2.7.1 R Studio Environment

To customize your R environment, you can change options through RStudio File -> Tools -> Options

2.7.2 Rprofile

In addition you can specify preferences for either a site or local installation in Rprofile.site. On Windows,
this file is in the C:\Program Files\R\R-x.y.z\etc directory where x.y.z is the version of R. Or
you can also place a .Rprofile file in the directory that you are going to run R from or in the user home
directory.

At startup, R will source the Rprofile.site file. It will then look for a .Rprofile file in the current working
directory. If it doesn’t find it, it will look for one in the user’s home directory.

There are two special functions you can place in these files. .First( ) will be run at the start of the R session
and .Last( ) will be run at the end of the session. These can be used to load a set of libraries that you use
most.

# Sample Rprofile.site file

# Things you might want to change options(papersize='a4')
# options(editor='notepad') options(pager='internal')
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Figure 2.8: Options in RStudio
Within the options window you can change the version of R, your default directory and SVN preferences

# R interactive prompt options(prompt='> ') options(continue='+ ')

# General options
options(tab.width = 2)
options(width = 100)
options(digits = 5)

.First <- function() {
library(lme4)
library(xtable)
cat("\nWelcome at", date(), "\n")

}

.Last <- function() {
cat("\nGoodbye at ", date(), "\n")

}

For more help on this see http://www.statmethods.net/interface/customizing.html
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Chapter 3

Objects in R

1. Everything (variable, functions etc) in R is an object
2. Every object has attributes one of which is class

3.1 Using ls and rm to managing R Objects

R creates and manipulates objects: variables, matrices, strings, functions, etc. objects are stored by name
during an R session.

During a R session, you may create many objects, if you wish to list the objects you have created in the
current session use the command

objects()
ls()

The collection of objects is called workspace.

If you wish to delete (remove) objects, issue the commands:

rm(x, y, z, junk)

where x, y, junk were the objects created during the session.

Note rm(list=ls()) will remove everything. Use with caution

3.2 Types of R objects

Objects can be thought of as a container which holds data or a function. The most basic form of data is
a single element, such as a single numeric or a character string. However one can’t do statistics on single
numbers! Therefore there are many other objects in R.
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3.2.1 vector

A vector is an ordered collection of numerical, character, complex or logical objects. Vectors are collec-
tion of atomic (same data type) components or modes. For example

# Numeric
vec1 <- 1:10
vec1

## [1] 1 2 3 4 5 6 7 8 9 10

# Character
vec2 <- LETTERS[1:10]
vec2

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

# logical
vec3 <- vec2 == "D"
vec3

## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

In each case above, these vectors have 10 elements, and are of length=10.

3.2.2 Matrix

A matrix is a multidimensional collection of data entries of the same type. Matrices have two dimensions.
It has rownames and colnames.

mat1 <- matrix(vec1, ncol = 2, nrow = 5)
print(mat1)

## [,1] [,2]
## [1,] 1 6
## [2,] 2 7
## [3,] 3 8
## [4,] 4 9
## [5,] 5 10

dim(mat1)

## [1] 5 2
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colnames(mat1) <- c("A", "B")
rownames(mat1) <- paste("N", 1:5, sep = "")
print(mat1)

## A B
## N1 1 6
## N2 2 7
## N3 3 8
## N4 4 9
## N5 5 10

3.2.3 list

A list is an ordered collection of objects that can be of different modes (e.g. numeric vector, array, etc.).

a <- 20
newList1 <- list(a, vec1, mat1)
print(newList1)

## [[1]]
## [1] 20
##
## [[2]]
## [1] 1 2 3 4 5 6 7 8 9 10
##
## [[3]]
## A B
## N1 1 6
## N2 2 7
## N3 3 8
## N4 4 9
## N5 5 10
##

newList1 <- list(a = a, myVec = vec1, mat = mat1)
print(newList1)

## $a
## [1] 20
##
## $myVec
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $mat
## A B
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## N1 1 6
## N2 2 7
## N3 3 8
## N4 4 9
## N5 5 10
##

3.2.4 data.frame

Though a data.frame is a restricted list with class data.frame, it maybe regarding as a matrix with
columns that can be of different modes. It is displayed in matrix form, rows by columns. (Its like an excel
spreadsheet)

df1 <- as.data.frame(mat1)
df1

## A B
## N1 1 6
## N2 2 7
## N3 3 8
## N4 4 9
## N5 5 10

3.2.5 factor

A factor is a vector of categorical variables, it can be ordered or unordered.

charVec <- rep(LETTERS[1:3], 10)
print(charVec)

## [1] "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A"
## [17] "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C"

table(charVec) # Tabulate charVec

## charVec
## A B C
## 10 10 10

fac1 <- factor(charVec)
print(fac1)

## [1] A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C
## Levels: A B C
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attributes(fac1)

## $levels
## [1] "A" "B" "C"
##
## $class
## [1] "factor"
##

str(fac1)

## Factor w/ 3 levels "A","B","C": 1 2 3 1 2 3 1 2 3 1 ...

levels(fac1)

## [1] "A" "B" "C"

The order of the levels of these categories is not important, but sometimes the order of the factor is important

3.2.6 ordered factor

By default the levels are ordered according to the alphabetical order of the categories.

But this may not be appropriate where factor order in important. For example if we have a survey response
scale of good to poor. Or we are looking at a gradient such as tumor grade 1 to 3. In these cases, the order
is important.

For example, we have a variable of socio-economic status from low to high. By default alphabetical ordering,
”high” is the lowest and ”low” is the highest level. In order to fix the ordering we need to use levels argument
to indicate the correct ordering of the categories.

facA <- sample(c("low", "medium", "high"), 10, replace = TRUE)
fac1 <- factor(facA)
str(fac1)

## Factor w/ 3 levels "high","low","medium": 2 2 2 3 3 3 1 2 1 3

levels(fac1)

## [1] "high" "low" "medium"

fac2 <- factor(facA, levels = c("low", "medium", "high"))
fac2

## [1] low low low medium medium medium high low high
## [10] medium
## Levels: low medium high
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fac3 <- factor(facA, levels = c("low", "medium", "high"),
ordered = TRUE)

fac3

## [1] low low low medium medium medium high low high
## [10] medium
## Levels: low < medium < high

# To convert an unordered factor to an ordered factor you can use
# the function ordered
ordered(fac2)

## [1] low low low medium medium medium high low high
## [10] medium
## Levels: low < medium < high

3.2.7 array

An array in R can have one, two or more dimensions. I find it useful to store multiple related data.frame (for
example when I jack-knife or permute data). Note if there are insufficient objects to fill the array, R recycles
(see below)

array(1:24, dim = c(2, 4, 3))

## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 9 11 13 15
## [2,] 10 12 14 16
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 17 19 21 23
## [2,] 18 20 22 24
##
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array(1:23, dim = c(2, 4, 3))

## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 9 11 13 15
## [2,] 10 12 14 16
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 17 19 21 23
## [2,] 18 20 22 1
##

array(1:23, dim = c(2, 4, 3), dimnames = list(paste("Patient",
1:2, sep = ""), LETTERS[1:4], c("X", "Y", "Z")))

## , , X
##
## A B C D
## Patient1 1 3 5 7
## Patient2 2 4 6 8
##
## , , Y
##
## A B C D
## Patient1 9 11 13 15
## Patient2 10 12 14 16
##
## , , Z
##
## A B C D
## Patient1 17 19 21 23
## Patient2 18 20 22 1
##

3.3 Attributes of R Objects

Basic attributes: mode and length
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The most basic and fundamental properties of every objects is its modeand length These are intrinsic
attributes of every object. Examples of mode are ”logical”, ”numeric”, ”character”, ”list”, ”expression”,
”name/symbol” and ”function”.

Of which the most basic of these are:

• ’character’: a character string

• ’numeric’: a real number, which can be an integer or a double

• ’integer’: an integer

• ’logical’: a logical (true/false) value

# Numeric
x <- 3
mode(x)

## [1] "numeric"

# Charachter
x <- "apple"
mode(x)

## [1] "character"

x <- 3.145
x + 2 # 5.145

## [1] 5.145

# FALSE, logical
x == 2

## [1] FALSE

x <- x == 2
x

## [1] FALSE

mode(x)

## [1] "logical"

All R objects have mode
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# vectors of different modes Numeric
x <- 1:10
mode(x)

## [1] "numeric"

x <- matrix(rnorm(50), nrow = 5, ncol = 10)
mode(x)

## [1] "numeric"

# Character
x <- LETTERS[1:5]
mode(x)

## [1] "character"

# logical
x <- x == "D"
mode(x)

## [1] "logical"

Quick Exercise
Repeat above, and find the length and class of x in each case.

3.3.1 Dimension

x <- matrix(5:14, nrow = 2, ncol = 5)
x

## [,1] [,2] [,3] [,4] [,5]
## [1,] 5 7 9 11 13
## [2,] 6 8 10 12 14

attributes(x)

## $dim
## [1] 2 5
##

In summary
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Object Modes Allow >1 Modes*
vector numeric, character, complex or logical No
matrix numeric, character, complex or logical No
list numeric, character, complex, logical, function, expression, ... Yes
data frame numeric, character, complex or logical Yes
factor numeric or character No
array numeric, character, complex or logical No

*Whether object allows elements of different modes. For example all elements in a vector or array have to be of the
same mode. Whereas a list can contain any type of object including a list.

3.4 Creating and accessing objects

We have already created a few objects: x, y, junk. Will create a few more and will select,
access and modify subsets of them.

• Create vectors, matrices and data frames using seq, rep, rbind and cbind

# Vector
x.vec <- seq(1, 7, by = 2)

# The function seq is very useful, have a look at the help on seq
# (hint ?seq)

names(x.vec) <- letters[1:4]
# Matrices
xMat <- cbind(x.vec, rnorm(4), rep(5, 4))
yMat <- rbind(1:3, rep(1, 3))
z.mat <- rbind(xMat, yMat)
# Data frame
x.df <- as.data.frame(xMat)
names(x.df) <- c("ind", "random", "score")

• Accessing elements
NOTE Use square brackets to access elements. The number of elements within the square
bracket must equal the dimension of the object.

1. vector [1]
2. matrix [1,1]
3. array with 3 dimensions [1,1,1]

# Access first element of 'x.vec'
x.vec[1]

## a
## 1
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# or if you know the name
x.vec["a"]

## a
## 1

# Access an element of 'xMat' in the second row, third column
xMat[2, 3]

## [1] 5

# Display the second and third columns of matrix 'xMat'
xMat[, c(2:3)]

##
## a -1.2081 5
## b -1.2717 5
## c -0.7870 5
## d 0.3818 5

# or
xMat[, -c(1)]

##
## a -1.2081 5
## b -1.2717 5
## c -0.7870 5
## d 0.3818 5

Here -1 means everything except for the first column.

Quick Exercise What does this command do?

xMat[xMat[, 1] > 3, ]

## x.vec
## c 5 -0.7870 5
## d 7 0.3818 5

If the object has class data.frame or list, you can use the dollar symbol $ to access elements.
The $ can only access columns of data.frame
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# Get the vector of 'ind' from 'x.df'
colnames(x.df)

## [1] "ind" "random" "score"

x.df$ind

## [1] 1 3 5 7

x.df[, 1]

## [1] 1 3 5 7

names(newList1)

## [1] "a" "myVec" "mat"

newList1$a

## [1] 20

3.5 Modifying elements

# Change the element of 'xMat' in the third row and first column to
# '6'
xMat[3, 1] <- 6
# Replace the second column of 'z.mat' by 0's
z.mat[, 2] <- 0

3.5.1 Sorting and Ordering items

Frequently we need to re-order the rows/columns of a matrix or see the rank order or a sorted set
elements of a vector

The functions sort and order are designed to be applied on vectors. Sort returns a sorted vector.
Order returns an index which can be used to sort a vector or matrix.

# Simplest 'sort'
z.vec <- c(5, 3, 8, 2, 3.2)
sort(z.vec)

## [1] 2.0 3.0 3.2 5.0 8.0
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order(z.vec)

## [1] 4 2 5 1 3

Sorting the rows of a matrix. We will use an example dataset in R called ChickWeight. First
have a look at the ChickWeight documentation (help)

Lets take a subset of the matrix, say the first 36 rows.

# ?ChickWeight
ChickWeight[1:2, ]

## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1

chick.short <- ChickWeight[1:36, ]

Now order this matrix by time and weight

## by just weight
chickOrd <- chick.short[order(chick.short$weight), ]
chickOrd[1:5, ]

## weight Time Chick Diet
## 26 39 2 3 1
## 13 40 0 2 1
## 1 42 0 1 1
## 25 43 0 3 1
## 14 49 2 2 1

## By both time and weight
chick.srt <- chick.short[order(chick.short$Time, chick.short$weight),

]
chick.srt[1:5, ]

## weight Time Chick Diet
## 13 40 0 2 1
## 1 42 0 1 1
## 25 43 0 3 1
## 26 39 2 3 1
## 14 49 2 2 1

3.5.2 Sort a matrix by 2 columns,one in decreasing order, the second ascending

There are 2 ways to do this. First is to sort the data in 2 steps
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x <- matrix(c(2, 1, 1, 3, 0.5, 0.3, 0.5, 0.2), ncol = 2)
# Sort the second column in decreasing order
x1 <- x[order(x[, 2], decreasing = TRUE), ]
# Sort the first column in the partially sorted matrix
x2 <- x1[order(x1[, 1]), ]

Or if both columns are numeric, you negatives sort in the reverse order of positives

x[order(x[, 1], -x[, 2]), ]

## [,1] [,2]
## [1,] 1 0.5
## [2,] 1 0.3
## [3,] 2 0.5
## [4,] 3 0.2

If the values aren’t known to be numeric, convert them to numeric before sorting

x[order(xtfrm(x[, 1]), -xtfrm(x[, 2])), ]

## [,1] [,2]
## [1,] 1 0.5
## [2,] 1 0.3
## [3,] 2 0.5
## [4,] 3 0.2

Note with both of these, missing values NA will be appended to the end of the list

z.vec <- c(5, NA, 8, 2, 3.2)
order(z.vec)

## [1] 4 5 1 3 2

z.vec[order(z.vec)]

## [1] 2.0 3.2 5.0 8.0 NA

z.vec[order(z.vec, decreasing = TRUE)]

## [1] 8.0 5.0 3.2 2.0 NA
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3.5.3 Creating empty vectors and matrices

To create a empty vector, matrix or data.frame

x1 <- numeric()
x2 <- numeric(5)
x1.mat <- matrix(0, nrow = 10, ncol = 3)

3.5.4 Missing Values

Missing values are assigned special value of ’NA’. If you create a R object with length greater than
the number of values, you will get missing values

a <- 1:3
length(a) <- 4
a

## [1] 1 2 3 NA

z <- c(1:3, NA)
z

## [1] 1 2 3 NA

ind <- is.na(z)
ind

## [1] FALSE FALSE FALSE TRUE

To remove missing values from a vector

print(z)

## [1] 1 2 3 NA

x <- z[!is.na(z)]
print(x)

## [1] 1 2 3

Check to see if a vector has all, any or a certain number of missing values. These create logical
vectors which can be used to filter a matrix or data.frame

all(is.na(z))

## [1] FALSE
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any(is.na(z))

## [1] TRUE

sum(is.na(z))

## [1] 1

sum(is.na(z)) > 1

## [1] FALSE
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3.6 Quick recap

• R Environment, interface, R help and R-project.org and Bioconductor.org website

• installing R and R packages.

• assignment <-, =, ->

• operators ==, !=, <, >, Boolean operators &, |

• Management of R session, starting session, getwd(), setwd(), dir()

• Listing and deleting objects in memory, ls(), rm()

• R Objects

Object Modes Allow >1 Modes*
vector numeric, character, complex or logical No
matrix numeric, character, complex or logical No
list numeric, character, complex, logical, function, expression, ... Yes
data frame numeric, character, complex or logical Yes
factor numeric or character No
array numeric, character, complex or logical No

*Whether object allows elements of different modes. For example all elements in a vector or array have to be
of the same mode. Whereas a list can contain any type of object including a list.

There are other objects type include ts (time series) data time etc. See the R manual for more
information. All R Objects have the attributes mode and length.

• Creating objects; c(), matrix(), data.frame(), seq(), rep(), etc

• Adding rows/columns to a matrix using rbind() or cbind()

• Sub-setting/Accessing elements in a vector(), matrix(), data.frame(), list() by element name
or index.
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3.7 Exercise 1

For this exercise we will work on data from a study which examined the weight, height and age of
women. Data from the women Study is available as an R dataset and information about this study
can be found by using R help (hint ?women) which we will read directly from the website URL
http://bcb.dfci.harvard.edu/˜aedin/courses/R/Women.txt into the object women

Basic tools for reading and writing data are respectively: read.table and write.table. We will go
into further detail about each later today, but first lets read in this file by typing these commands:

myURL <- "http://bcb.dfci.harvard.edu/˜aedin/courses/R/Women.txt"
women <- read.table(myURL, sep = "\t", header = TRUE)

(Or in RStudio Click on Workspace -> Import Dataset)
Tasks

1. Get help on the command colnames

2. what is the class of this dataset?

3. How many rows and columns are in the data? (hint try using the functions str, dim, nrow and
ncol))

4. Use the summary(), to view the mean height and weight of women

5. Compare the result to using the function colMeans

6. How many women have a weight under 120?

7. What is the average height of women who weigh between 124 and 150 pounds (hint: need to
select the data, and find the mean).

8. Sort the matrix women by ’weight’ hint use order

9. Give the 5th row the rowname ”Lucy”
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Chapter 4

Reading and writing data to and from R

So far, we have only analyzed data that were already stored in R. Basic tools for reading and
writing data are respectively: read.table and write.table. We will go into further detail about each.
First we will talk about reading in simple text documents; comma and tab-delimited format text
files, then Excel and import/export from other statistical software.

4.1 Importing and reading text files data into RStudio

RStudio has a nice user interface to reading in file. Click on Workspace -> Import Dataset.

Figure 4.1: which provides an easy approach to read a text from a local directory or directly from a web
URL

Enter a file location (either local or on the web), and RStudio will make a ”best guess” at
the file format. There are a limited number of options (heading yes or no), separators (comma,
space or tab) etc but these should cover the most common data exchange formats (The R interfaces
RCommander and RExcel also provide rich support for data import of many different file formats
into R)
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Figure 4.2: The top panel shows the plain text of the file, and the lower panels displays how R is interpreting
the data. Black rows are the column headings

4.2 Importing data using R command read.table()

If you are calling R from a script, or are using R on a machine in which RStudio is not available,
knowledge of commands to read and write files are vital

4.2.1 Using read.table() and read.csv()

1. The most commonly used function for reading data is read.table(). It will read the data into
R as a data.frame.
By Default read.table() assumes a file is space delimited and it will fail if the file is in a
different format with the error below.

Women<-read.table("Women.txt")

In order to read files that are tab or comma delimited, the defaults must be changed. We also
need to specify that the table has a header row

# Tab Delimited
Women <- read.table("Women.txt", sep = "\t", header = TRUE)
Women[1:2, ]

## height weight age
## 1 58 115 33
## 2 59 117 34
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summary(Women)

## height weight age
## Min. :58.0 Min. :115 Min. :30.0
## 1st Qu.:61.5 1st Qu.:124 1st Qu.:32.0
## Median :65.0 Median :135 Median :34.0
## Mean :65.0 Mean :137 Mean :33.9
## 3rd Qu.:68.5 3rd Qu.:148 3rd Qu.:35.5
## Max. :72.0 Max. :164 Max. :39.0

class(Women$age)

## [1] "integer"

Note by default, character vector (strings) are read in as factors. To turn this off, use the
parameter as.is=TRUE

2. Important options:

header==TRUE should be set to ’TRUE’, if your file contains the column
names

as.is==TRUE otherwise the character columns will be read as factors
sep=”” field separator character (often comma ’,’ or tab ”�” eg:

sep=”,”)
na.strings a vector of strings which are to be interpreted as ’NA’ val-

ues.
row.names The column which contains the row names
comment.char by default, this is the pound # symbol, use ”” to turn off

interpretation of commented text.

# Read the help file
help(read.table)

Note the defaults for read.table(), read.csv(), read.delim() are different. For example, in
read.table() function, we specify header=TRUE, as the first line is a line of headings among
other parameters.

3. read.csv() is a derivative of read.table() which calls read.table() function with the following
options so it reads a comma separated file:

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

Read in a comma separated file:
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# Comma Delimited
Women2 <- read.csv("Women.csv")
Women2[1:2, ]

## height weight age
## 1 58 115 33
## 2 59 117 34

4. Reading directly from Website You can read a file directly from the web

myURL <- "http://bcb.dfci.harvard.edu/˜aedin/courses/R/Women.txt"
read.table(myURL, header = TRUE)[1:2, ]

## height weight age
## 1 58 115 33
## 2 59 117 34

4.2.2 Reading compressed data into R

Files compressed via the algorithm used by gzip can be used as connections created by the
function gzfile, whereas files compressed by bzip2 can be used via bzfile. Suppose your data
is in a compressed gzip or tar.gz file, you can use the R gzfile function to decompress on the
fly. Do this:

myDataFrame <- read.table(gzfile("myData.gz"), header = T)
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4.3 Exercise 2

The ToothGrowth data are from a study which examined the growth of teeth in guinea pigs (n=10)
in response to three dose levels of Vitamin C (0.5, 1, and 2 mg), which was administered using two
delivery methods (orange juice or ascorbic acid). Data from the Tooth Growth Study is available
as an R dataset and information about this study can be found by using R help (hint ?ToothGrowth)

1. Download the data set ”ToothGrowth.xls” which is available on the course website. Save it
in your local directory. Open this file ”ToothGrowth.xls” in Excel.

2. Export the data as both a comma or tab delimited text files. In Excel select File -> Save as
and
Tab: select the format Text (Tab delimited) (*.txt).
CSV: select the format CSV (Comma delimited) (*.csv).

1. Load each data file (.txt and .csv) into R

2. How many rows are there is ToothGrowth?

3. what is the mean and SD of Tooth length

4. Does treatment have a significant effect?
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4.3.1 Importing text files Using scan()

NOTE: read.table() is not the right tool for reading large matrices, especially those with many
columns. It is designed to read ’data frames’ which may have columns of very different classes.
Use scan() instead.

scan() is an older version of data reading facility. Not as flexible, and not as user-friendly as
read.table(), but useful for Monte Carlo simulations for instance. scan() reads data into a vector or
a list from a file.

myFile <- "outfile.txt"
# Create a file
cat("Some data", "1 5 3.4 8", "9 11 23", file = myFile, sep = "\n")
exampleScan <- scan(myFile, skip = 1)
print(exampleScan)

## [1] 1.0 5.0 3.4 8.0 9.0 11.0 23.0

Note by default scan() expects numeric data, if the data contains text, either specify what=”text”
or give an example what=”some text”.

Other useful parameters in scan() are nmax (number of lines to be read) or n (number of items
to be read).

scan(myFile, what = "some text", n = 3)

## [1] "Some" "data" "1"

4.3.2 Parsing each line - Readlines

There are several function in R for parsing large files. You can use the command readLine or
readLines to parse a file line by line.
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4.4 Writing Data table from R

1. Function sink() diverts the output from the console to an external file

myPath <- getwd()
sink(file.path(myPath, "sinkTest.txt"))
print("This is a test of sink")
ls()
sin(1.5 * pi)
print(1:10)
sink()

2. Writing a data matrix or data.frame using the write.table() function write.table() has similar
arguments to read.table()

myResults <- matrix(rnorm(100, mean = 2), nrow = 20)
write.table(myResults, file = "results.txt")

This will write out a space separated file.

df1 <- data.frame(myResults)
colnames(df1) <- paste("MyVar", 1:5, sep = "")
write.table(df1, file = "results2.txt", row.names = FALSE,

col.names = TRUE)
read.table(file = "results2.txt", head = TRUE)[1:2, ]

## MyVar1 MyVar2 MyVar3 MyVar4 MyVar5
## 1 2.654 3.149 4.073 1.224 0.8089
## 2 1.260 2.338 2.764 3.020 3.0991

3. Important options

append = FALSE create new file
sep = ” ” separator (other useful possibility sep=”,”)
row.names = TRUE may need to change to row.names=FALSE
col.names = TRUE column header

4. Output to a webpage
The package R2HTML will output R objects to a webpage

4.4.1 Other considerations when reading or writing data

It is often useful to create a variable with the path to the data directory, particular if we need to
read and/or write more than one dataset. NOTE: use double backslashes to specify the path names,
or the forward slash can be used.
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myPath <- file.path("C://Project1")
file.exists(myPath)

## [1] FALSE

# Set myPath to be current directory
myPath <- file.path(getwd())

It is better to expand a path using file.path() rather than paste() as file.path() will expand the
path with delimiting characters appropriate to the operating system in use (eg / unix, \, windows
etc)

myfile <- file.path(myPath, "Women.txt")

Use file.exists() to test if a file can be found. This is very useful. For example, use this to test
if a file exists, and if TRUE read the file or you could ask the R to warn or stop a script if the file
does not exist

if (!file.exists(myfile)) {
print(paste(myfile, "cannot be found"))

} else {
Women <- read.table(myfile, sep = "\t", header = TRUE)
Women[1:2, ]

}

## height weight age
## 1 58 115 33
## 2 59 117 34
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4.5 Viewing Data

After you use read.table or other function to import data into you, you will need to quickly review
the data to ensure it important correctly

4.5.1 head, tail

There are several functions which are useful for this. the functions head and tail will display
the first and last 6 rows respectively. These can be used to view parts of a vector, matrix, table,
data.frame or function

# Data
head(women)

## height weight age
## 1 58 115 33
## 2 59 117 34
## 3 60 120 37
## 4 61 123 31
## 5 62 126 31
## 6 63 129 34

tail(women)

## height weight age
## 10 67 142 34
## 11 68 146 34
## 12 69 150 36
## 13 70 154 33
## 14 71 159 30
## 15 72 164 37

# View the head and tail (15 line) of the function cor which
# calculates correlation

head(cor)

##
## 1 function (x, y = NULL, use = "everything", method = c("pearson",
## 2 "kendall", "spearman"))
## 3 {
## 4 na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
## 5 "everything", "na.or.complete"))
## 6 if (is.na(na.method))

tail(cor, n = 15)
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##
## 99 x2 <- rank(x2[ok])
## 100 y2 <- rank(y2[ok])
## 101 r[i, j] <- if (any(ok))
## 102 .Internal(cor(x2, y2, 1L, method == "kendall"))
## 103 else NA
## 104 }
## 105 }
## 106 rownames(r) <- colnames(x)
## 107 colnames(r) <- colnames(y)
## 108 if (matrix_result)
## 109 r
## 110 else drop(r)
## 111 }
## 112 }
## 113 }

4.5.2 str

The function str is very useful, it displays the structure of an R object

str(women)

## 'data.frame': 15 obs. of 3 variables:
## $ height: int 58 59 60 61 62 63 64 65 66 67 ...
## $ weight: int 115 117 120 123 126 129 132 135 139 142 ...
## $ age : int 33 34 37 31 31 34 31 39 35 34 ...

str(1:10)

## int [1:10] 1 2 3 4 5 6 7 8 9 10

str(cor)

## function (x, y = NULL, use = "everything", method = c("pearson",
## "kendall", "spearman"))
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4.5.3 The function Summary

The function summary can be applied to a vector, factor,matrix,data.frame, list etc. and will be
summarized the object. The function will generate a summary specialized for the class of the
object.

methods(summary)

## [1] summary.aov summary.aovlist
## [3] summary.aspell* summary.connection
## [5] summary.data.frame summary.Date
## [7] summary.default summary.ecdf*
## [9] summary.factor summary.glm
## [11] summary.infl summary.lm
## [13] summary.loess* summary.manova
## [15] summary.matrix summary.mlm
## [17] summary.nls* summary.packageStatus*
## [19] summary.PDF_Dictionary* summary.PDF_Stream*
## [21] summary.POSIXct summary.POSIXlt
## [23] summary.ppr* summary.prcomp*
## [25] summary.princomp* summary.srcfile
## [27] summary.srcref summary.stepfun
## [29] summary.stl* summary.table
## [31] summary.tukeysmooth*
##
## Non-visible functions are asterisked

For a vector, data.frame or matrix its provides information data distribution (min, quantile,
mean, max etc)

summary(1:10)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.25 5.50 5.50 7.75 10.00

summary(women)

## height weight age
## Min. :58.0 Min. :115 Min. :30.0
## 1st Qu.:61.5 1st Qu.:124 1st Qu.:32.0
## Median :65.0 Median :135 Median :34.0
## Mean :65.0 Mean :137 Mean :33.9
## 3rd Qu.:68.5 3rd Qu.:148 3rd Qu.:35.5
## Max. :72.0 Max. :164 Max. :39.0

For character vector or factor, it provides a count of the items
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vec <- sample(c("old", "young"), 20, replace = TRUE)
summary(vec)

## Length Class Mode
## 20 character character

summary(factor(vec))

## old young
## 10 10

4.5.4 Table

The function table will tabulate the elements of a character vector

table(vec)

## vec
## old young
## 10 10

class(vec)

## [1] "character"

I have included a lot more on cross-tabulation and generating summaries on data in chapter 9
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4.6 Exercise 3

1. Use read.table() to read the space separated text file WomenStats.txt directly from the website
http://bcb.dfci.harvard.edu/˜aedin/courses/R/WomenStats.txt, Call
this data.frame women.

2. Change the rownames to be the letters of the alphabet eg ”A”, ”B” ”C” ”D” etc

3. Write out this file as a tab delimited file using write.table()

4. Read this into R using read.table(). What parameters need modifying to read the data as a
tab-delimited file?
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4.7 Importaing Data from other Software

4.7.1 Reading data from Excel into R

There are several packages and functions for reading Excel data into R, however I normally export
data as a .csv file and use read.table().

However if you wish to directly load Excel data, here are many the options available to you.
See the section on ”Importing-from-other-statistical-systems” in the webpage http://cran.
r-project.org/doc/manuals/R-data.html for more information

1. xslx seems to be the simplest option at the moment

library(xlsx)
ww <- read.xlsx(file = "Women.xlsx", sheetIndex = 1)

read.xlsx accepts .xls and .xlsx format. You must include a worksheet name or number. It is
optional to specify a row or column index to indicate a section of a Worksheet

2. There is also a packages call XLConnect which is similar

require(XLConnect)
wb <- loadWorkbook("Women.xlsx", create = TRUE)
WW <- readWorksheet(wb, sheet = 1)

Or you can read direct from a connection, calling the file directly.

Ww <- readWorksheetFromFile("Women.xlsx", name = "sheet1")

3. RExcel R can be ran from within Excel on Windows using RExcel (http://rcom.univie.
ac.at/). This add a menu to Excel that allows you to call R functions from within Excel.
RExcel is part of the much large Statconn project.

4. RODBC library. We are not sure it will not work with .xlsx files. See the vignette for more
information

library(RODBC)
RShowDoc("RODBC", package = "RODBC")

The following RODBC function works under windows, but may have issues under MacOS or
Linux as may need to install ODBC drivers.

channel<-odbcConnectExcel("ToothGrowth.xls")
#list the spreadsheets
sqlTables(channel)

#read the Excel Sheet ToothGrowth using either:
ToothGrowth<-sqlFetch(channel, "ToothGrowth")
ToothGrowth<-sqlQuery(channel, "select * from [ToothGrowth$]")
ToothGrowth[1:2,]
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5. The gdata library function read.xls()

Perl must be installed on your computer in order for these to work, as it uses the Perl functions
’xls2csv’ or ’xls2tab’.

4.8 Import/Export from other statistical software

Most binary data files written by statistical software other than R such as EpiInfo, Minitab, S-
PLUS, SAS, SPSS,Stata and Systat, can be loaded into R using the R package foreign or Hmisc.
Details can be found in the R manual: R data Import/Export.

4.8.1 Reading data from SAS

If you have SAS, you can use Frank Harrell’s ’Hmisc’ package which has functions sas.get and
sasxport.get, and other utility functions such as label,sas.get, contents,describe. For those without
a SAS license, package ’foreign’ has read.ssd, lookup.xport, and read.xport.

• From SAS, save SAS dataset in transport format

libname out xport 'c:/mydata.xpt';
data out.mydata;
set sasuser.mydata;
run;

In R

library(Hmisc)
mydata <- sasxport.get("c:/mydata.xpt")

• SAScii. Anthony Joseph Damico recently announced SAScii is a new packages to parse SAS
input code to read.fwf However although they stated the code below should work, I have been
not so successful with it in my hands.

require("SAScii")

## Loading required package: SAScii

## Loading required package: stringr

# Load the 2010 National Health Interview Survey Persons file as an
# R data frame from CDC
NHIS10_personsx_SASInst <- "ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Program_Code/NHIS/2010/PERSONSX.sas"

NHIS10_personsx_SASInst <- "ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHIS/2010/personsx.zip"
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#store the NHIS file as an R data frame!
NHIS10_personsx_df <- read.SAScii(NHIS10_personsx_SASInst, NHIS10_personsx_SASInst, zipped = TRUE)

#or store the NHIS SAS import instructions for use in a
#read.fwf function call outside of the read.SAScii function
NHIS10_personsx_sas <- parse.SAScii(NHIS10_personsx_SASInst)

#save the data frame now for instantaneous loading later
save(NHIS10_personsx_df , file = "NHIS10_personsx_data.RData" )

• Recently Xin Wei of Roche Pharmaceuticals published a SAS macro called PROC_R that
may potentially ease integrating R and SAS (reference Xin Wei PROC_R: A SAS Macro that
Enables Native R Programming in the Base SAS Environment J. Stat Software. Vol. 46,
Code Snippet 2, Jan 2012) which allows you to put R code within a SAS macro.

%include "C:\aedin\sasmacros\Proc_R.sas";
%Proc_R (SAS2R =, R2SAS =);
Cards4;

******************************
***Please Enter R Code Here***
******************************

;;;;
%Quit;

4.8.2 S

PSS
From SPSS, save SPSS dataset in transport format

get file='c:\mydata.sav' .
export outfile='c:\mydata.por' .

In R

library(Hmisc)
mydata <- spss.get("c:/mydata.por", use.value.labels = TRUE)

4.8.3 Stata or Systat

library(foreign)
mydata <- read.dta("c:/mydata.dta")
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4.9 From a Database Connection

There is also support for database connectivity including for mySQL, Oracle and specialized file
formats including network Common Data Form (netCDF) etc. See http://cran.r-project.
org/doc/manuals/R-data.html for more details.

Note installation of RMySQL or ROracle is simple on Linux or Mac, but maybe complex on
MSWindows, as there is no binary file. See the ReadMe associated with the package on the R
website
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4.10 Sampling and Creating simulated data

1. seq and rep. we have already seen the function seq and rep which generate a sequence or
repeat elements.

2. Create data from a specific distribution

Often we want to sample data from a specific distribution, also sometimes called simulating
data. This data is usually used to test some algorithm or function that someone has written.
Since the data is simulated, you know where it came from and so what the answer should be
from your algorithm or function. Simulated data lets you double-check your work.

Each distribution has 4 functions associated with it:

For example, rnorm( ), dnorm( ), pnorm( ), and qnorm( ) give random normals, the normal
density (sometimes called the differential distribution function), the normal cumulative distri-
bution function (CDF), and the inverse of the normal CDF (also called the quantile function),
respectively.

Almost all of the other distributions have similar sets of four functions. The ’r’ versions are
rbeta, rbinom, rcauchy, rchisq, rexp, rf, rgamma, rgeom, rhyper, rlogis, rlnorm, rmultinom,
rnbinom, rnorm, rpois, rsignrank, rt, runif, rweibull, and rwilcox (there is no rtukey because
generally only ptukey and qtukey are needed).

For example, generate 5 observations from a normal distribution with mean 0 and stdev 1, or
10 observation with a mean of 20 and a stdev of 2

rnorm(5, 0, 1)

## [1] 0.156133 0.002906 1.747518 -0.924189 -0.445842

rnorm(10, 6, 2)

## [1] 6.488 8.059 7.217 9.168 4.904 8.448 5.516 4.433 4.003 4.582

For most of the classical distributions, these simple function provide probability distribution
functions (p), density functions (d), quantile functions (q), and random number generation
(r). Beyond this basic functionality, many CRAN packages provide additional useful distri-
butions. In particular, multivariate distributions as well as copulas are available in contributed
packages. See http://cran.r-project.org/web/views/Distributions.html
and http://cran.r-project.org/doc/manuals/R-intro.html#Probability-distributions
for more information.

3. Sample from existing data

The second type of simulation you may wish to perform is to bootstrap or permute existing
data. In bootstrapping one generally follows the same basic steps

(a) Resample a given data set a specified number of times
(b) Calculate a specific statistic from each sample
(c) Find the standard deviation of the distribution of that statistic
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The function sample() will resample a given data set with or without replacement

sample(1:10)

## [1] 6 1 4 3 10 2 8 9 7 5

sample(1:10, replace = TRUE)

## [1] 10 4 8 10 4 1 5 3 8 5

You can also add weights to bias selection or probability of selecting of a certain subset. For
example bootstrap sample from the same sequence (1:10) with probabilities that favor the
numbers 1-5

weights <- c(rep(0.25, 5), rep(0.05, 5))
print(weights)

## [1] 0.25 0.25 0.25 0.25 0.25 0.05 0.05 0.05 0.05 0.05

sample(10, replace = T, prob = weights)

## [1] 9 5 2 2 1 4 8 5 3 3

4.11 Exercise 4

1. Create the vector which contains the first 20 letters of the alphabet and the sequence of
number 0:200 in increments of 10 (hint use seq()).

2. Use sample() to randomize the order of the vector.

3. Use the function cat() to write this vector to a file called ”myVec.txt”.

4. Use scan() to read the first 10 items in the file, what value do you give to the parameter
’what’. Compare running scan() with different data types; eg: what=”text”, what=123 and
what=TRUE
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Chapter 5

Introduction to programming and writing
Functions in R

5.1 Why do we want to write functions?

We have a general knowledge of function use, so how do we write our own functions. In other
words, we want to create objects of mode function.

1. Why do we want to write functions?

2. Definition of a function: assignment of the form

myFunction <- function(arg1, arg2, ...) expression

expression is an R expression using arguments arg1, arg2 to calculate a value. Function
returns the value of the expression

3. Call to a function within R

myFunction(expr1, expr2, ...)

4. Lets write a short function, a function to calculate the means of a vector.

myMean <- function(y1) {
mean <- sum(y1)/length(y1)
return(mean)

}

Now Lets test out function

testVec <- rnorm(50, 20, 4)
mean(testVec)

## [1] 20.6

myMean(testVec)

## [1] 20.6
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5. A more complex example

Example of a function ’twosam’: takes as arguments two vectors ’y1’ and ’y2’, calculates
the 2-sample t-test statistic (assuming equal variance), and returns the t-statistic

twosam <- function(y1, y2) {
n1 <- length(y1)
n2 <- length(y2)
yb1 <- mean(y1)
yb2 <- mean(y2)
s1 <- var(y1)
s2 <- var(y2)
s <- ((n1 - 1) * s1 + (n2 - 1) * s2)/(n1 + n2 - 2)
tst <- (yb1 - yb2)/sqrt(s * (1/n1 + 1/n2))
return(tst)

}

5.2 Conditional statements (if, ifelse, switch)

5.2.1 if statement

if (condition) expr1 else expr2

condition must evaluate to a single logical value, ie either TRUE or FALSE.

x <- 9
if (x > 0) sqrt(x) else sqrt(-x)

## [1] 3

5.2.2 ifelse statement

Vectorized version of the if/else construct: ifelse(condition, expr1, expr2) function which returns a
vector with elements expr1 if condition is true, otherwise it returns expr2.

ifelse(x >= 0, sqrt(x), sqrt(-x))

## [1] 3

5.2.3 switch statement

The switch function, a generalization of the if statement
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spread <- function(x, type) {
switch(type, sd = sd(x), mad = mad(x), IQR = IQR(x)/1.349)

}
samp <- rnorm(50)
spread(samp, 2)

## [1] 0.8806

spread(samp, "IQR")

## [1] 1.108

Why IQR(x)/1.349 ? In a normal distribution 50% of the data (between 0.25 and 0.75 quartiles). So the distance between the
two quartiles IQR(x) = quantile(x,0.75) − quantile(x,0.25). For a normal distribution IQR is qnorm(0.75) - qnorm(0.25) ≈ 1.349.
Therefore IQR/1.349 is an estimator of the standard deviation of a normal distribution.

5.3 Repetitive execution: For and While loops

5.3.1 For loops

for (i in expr1) expr2

where i is the loop variable, expr1 is usually a sequence of numbers, and expr2 is an
expression.

for (i in 1:5) print(iˆ2)

## [1] 1
## [1] 4
## [1] 9
## [1] 16
## [1] 25

5.3.2 while loops

while (condition) expr continues till the condition becomes false. Used often in iterative calcula-
tions

x <- 1
y <- 16
while (xˆ2 < y) {

cat(x, "squared is ", xˆ2, "\n") # print x and sq(x)
x <- x + 1

}

67



## 1 squared is 1
## 2 squared is 4
## 3 squared is 9

A word of caution, it is easy to write a while() loop that doesn’t terminate, in which case your
script may go into a never-ending cycle. Therefore if possible, write a for() loop in preference to a
while() loop.

Iterative for and while loops in R are sometimes memory intensive, and functions such as apply,
sweep or aggregate should be should instead. For a comparision of the computational efficiency of
For versus apply loops see section 5.8.2

5.4 The Apply Functions

1. apply

appply() applies a function over the rows or columns of a matrix. The syntax is

apply(X, MARGIN, FUN, ARGs)

where X: array, matrix or data.frame; MARGIN: 1 for rows, 2 for columns, c(1,2) for both;
FUN: one or more functions; ARGs: possible arguments for function

For example, lets go back to the example dataset women which we loaded from the web.

summary(women)

## height weight age
## Min. :58.0 Min. :115 Min. :30.0
## 1st Qu.:61.5 1st Qu.:124 1st Qu.:32.0
## Median :65.0 Median :135 Median :34.0
## Mean :65.0 Mean :137 Mean :33.9
## 3rd Qu.:68.5 3rd Qu.:148 3rd Qu.:35.5
## Max. :72.0 Max. :164 Max. :39.0

colMeans(women)

## height weight age
## 65.00 136.73 33.93

apply(women, 2, mean)

## height weight age
## 65.00 136.73 33.93
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testEq <- all(rowMeans(women) == apply(women, 1, mean))
print(testEq)

## [1] TRUE

if (testEq) print("rowMeans is equivalent to apply(df, 1, mean)")

## [1] "rowMeans is equivalent to apply(df, 1, mean)"

Create a function using apply

colSd <- function(df) apply(df, 2, sd)
colSd(women)

## height weight age
## 4.472 15.499 2.576

2. tapply

tapply() is a member of the very important apply() functions. It is applied to ”ragged” arrays,
that is array categories of variable lengths. Grouping is defined by vector.

The syntax is:

tapply(vector, factor, FUN)

Example:

ageSplit <- ifelse(women$age < 35, "under35", "over35")
print(ageSplit)

## [1] "under35" "under35" "over35" "under35" "under35" "under35"
## [7] "under35" "over35" "over35" "under35" "under35" "over35"
## [13] "under35" "under35" "over35"

tapply(women$weigh, ageSplit, length)

## over35 under35
## 5 10

tapply(women$weigh, ageSplit, summary)
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## $over35
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 120 135 139 142 150 164
##
## $under35
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 115 124 130 134 145 159
##

3. lapply and sapply
lapply() and sapply() are applied to lists. lapply() returns a list (of the same length as input).
sapply() is a user-friendly version of lapply by default returning a vector or matrix if appro-
priate.
tapply will

myList <- list(ToothGrowth = TG, WomenAge = women$age, beta = exp(-3:3),
logicalVec = c(TRUE, FALSE, FALSE, TRUE))

# compute the list mean for each list element
res1 <- lapply(myList, length)
print(res1)
print(paste("Class of res1:", class(res1)))

res2 <- sapply(myList, length)
print(res2)
print(paste("Class of res2:", class(res2)))

4. for more apply functions see the library plyr

5.4.1 Merging Datasets

There are several function for manipulating data, see the plyr library for functions. Also see the
function reshape and stack which make it easier to convert a ”wide” table into a narrow one.

x1 <- data.frame(Case = sample(letters, 10), A1 = rnorm(10),
B1 = 1:10, C1 = rep(1:5, 2))

x1

## Case A1 B1 C1
## 1 f -0.05922 1 1
## 2 d -0.50757 2 2
## 3 g 0.92258 3 3
## 4 i -0.05271 4 4
## 5 x -2.60035 5 5
## 6 a 1.16796 6 1
## 7 v -2.52888 7 2
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## 8 q -0.22759 8 3
## 9 m -0.86923 9 4
## 10 o 0.05612 10 5

x2 <- data.frame(A1 = seq(1, 10, 2), Case = sample(letters,
10), D1 = rnorm(10, 4), E1 = rep(1:5, 2), B1 = c(rep(c("Non-Smoker",
"Smoker"), each = 4), NA, NA))

x2

## A1 Case D1 E1 B1
## 1 1 k 3.263 1 Non-Smoker
## 2 3 v 3.864 2 Non-Smoker
## 3 5 d 4.993 3 Non-Smoker
## 4 7 z 5.525 4 Non-Smoker
## 5 9 n 2.906 5 Smoker
## 6 1 w 2.989 1 Smoker
## 7 3 r 4.262 2 Smoker
## 8 5 u 4.504 3 Smoker
## 9 7 m 5.215 4 <NA>
## 10 9 p 4.851 5 <NA>

merge(x1, x2, "Case")

## Case A1.x B1.x C1 A1.y D1 E1 B1.y
## 1 d -0.5076 2 2 5 4.993 3 Non-Smoker
## 2 m -0.8692 9 4 7 5.215 4 <NA>
## 3 v -2.5289 7 2 3 3.864 2 Non-Smoker

5.5 Exercise 5

1. Write a for loop printing the consecutive powers of 2, from 0 to 10

2. Write a while loop printing the consecutive powers of 2, less than 1000
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5.6 Functions for parsing text

There are many functions with R for parsing text. We will cover some of this here.

• To search for text within an R vector, use grep. It uses the same regular expression patterns
as perl is you set perl=TRUE

grep("A", LETTERS)

## [1] 1

grep("A", LETTERS, value = TRUE)

## [1] "A"

To search for a string begining with ’Ma’ or ending in the letters d or v use regular expression
pattern seach. Here means the start and

means the end.

poem <- c("Mary", "Had", "a", "little", "lamb")
grep("ˆMa", poem, value = TRUE)

## [1] "Mary"

grep("[dv]$", poem, value = TRUE)

## [1] "Had"

R has full support regular expresion (see ?regex) synthax. For example to search for words
containing the letter a. Here refers to any alphanumeric character and + means one or more
whereas ∗ means zero or more.

grep("\\w*a\\w+", poem, value = TRUE)

## [1] "Mary" "Had" "lamb"

grep("\\w*a\\w*", poem, value = TRUE)

## [1] "Mary" "Had" "a" "lamb"

• To substitute characters within a string use sub
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sub("B", "A", LETTERS)

## [1] "A" "A" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P"
## [17] "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

Trim trailing white space

str <- "Mary had a little lamb "
sub(" +$", "", str) ## spaces only

## [1] "Mary had a little lamb"

sub("\\s+$", "", str, perl = TRUE) ## Perl-style syntax

## [1] "Mary had a little lamb"

• To split a character string use strsplit

a <- date()
strsplit(a, " ")

## [[1]]
## [1] "Fri" "Dec" "14" "04:03:23" "2012"
##

strsplit(a, "J")

## [[1]]
## [1] "Fri Dec 14 04:03:23 2012"
##

b <- strsplit(a, "11")
class(b)

## [1] "list"

b <- unlist(b)
class(b)

## [1] "character"

• For special characters you need to precede them with a double back slash
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a <- "aedin@jimmy.harvard.edu"
strsplit(a, "\\.")

## [[1]]
## [1] "aedin@jimmy" "harvard" "edu"
##

5.7 Programming in R: More advanced

5.8 Viewing Code of functions from R packages

Its often useful to view the code of R functions. To see the code, type the name of that code without
parenthesis. Take a look closer at a built-in function IQR. We see it is simply taking the difference
(diff()) of the 25% and 75% quantile. We can use the functions body() and args() to see the code
and the arguments (parameters) of the function.

help(IQR)

## starting httpd help server ...

## done

xx <- sample(1:30, 10)
quantile(xx)

## 0% 25% 50% 75% 100%
## 1.0 5.0 11.0 16.5 22.0

IQR(xx)

## [1] 11.5

args(IQR)

## function (x, na.rm = FALSE, type = 7)
## NULL

body(IQR)

## diff(quantile(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, names = FALSE,
## type = type))

IQR

## function (x, na.rm = FALSE, type = 7)
## diff(quantile(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, names = FALSE,
## type = type))
## <bytecode: 0x02d05c8c>
## <environment: namespace:stats>
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Sometimes, functions don’t appear to be ”visible”. In this case, use methods or getAnywhere to
view the function.

Someone a function may have different version, and may depend on the class of the input
object. In this case functions will be called functionname.class. In the case below, mean will call
a the function mean.Data or mean.difftime if the input object is a Date, difftime respectivel

mean

## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x037e1920>
## <environment: namespace:base>

methods(mean)

## [1] mean.data.frame mean.Date mean.default mean.difftime
## [5] mean.POSIXct mean.POSIXlt

Now we can see the code for mean, as we know the full name of the function is mean.default.

mean.default

## function (x, trim = 0, na.rm = FALSE, ...)
## {
## if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
## warning("argument is not numeric or logical: returning NA")
## return(NA_real_)
## }
## if (na.rm)
## x <- x[!is.na(x)]
## if (!is.numeric(trim) || length(trim) != 1L)
## stop("'trim' must be numeric of length one")
## n <- length(x)
## if (trim > 0 && n) {
## if (is.complex(x))
## stop("trimmed means are not defined for complex data")
## if (any(is.na(x)))
## return(NA_real_)
## if (trim >= 0.5)
## return(stats::median(x, na.rm = FALSE))
## lo <- floor(n * trim) + 1
## hi <- n + 1 - lo
## x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
## }
## .Internal(mean(x))
## }
## <bytecode: 0x037e1568>
## <environment: namespace:base>

Some function are ”Non visible” that means you can see the code. When you These are hidden
in the package namespace. use the function methods, non visible functions are marked by an
asterisk.
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`?`(t.test)
t.test

## function (x, ...)
## UseMethod("t.test")
## <bytecode: 0x030f6f60>
## <environment: namespace:stats>

methods(t.test)

## [1] t.test.default* t.test.formula*
##
## Non-visible functions are asterisked

To view a hidden or non-visible function use ”PackageName:::function”

stats:::t.test.default

To reduce the output and save paper in the manual, we will just view the first 5 and last 10 lines
of the function.

head((stats:::t.test.default), 5)

##
## 1 function (x, y = NULL, alternative = c("two.sided", "less", "greater"),
## 2 mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95,
## 3 ...)
## 4 {
## 5 alternative <- match.arg(alternative)

print("truncated...")

## [1] "truncated..."

tail((stats:::t.test.default), 10)

##
## 102 names(mu) <- if (paired || !is.null(y))
## 103 "difference in means"
## 104 else "mean"
## 105 attr(cint, "conf.level") <- conf.level
## 106 rval <- list(statistic = tstat, parameter = df, p.value = pval,
## 107 conf.int = cint, estimate = estimate, null.value = mu,
## 108 alternative = alternative, method = method, data.name = dname)
## 109 class(rval) <- "htest"
## 110 return(rval)
## 111 }

There are some functions that you will not be able to see using these commands. These are most
likely written in object orientated R (called S4). Much of Bioconductor’s functions are written in
S4. However a full discussion of S4 functions is beyond the scope of this course.
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5.8.1 Making scripts work across your computers or platforms

I work on several computers, each have fairly different directory structures. But by setting a con-
sistent directory structure within the home directory I can sync code between computers and have
them run properly on each one since where I run my R projects have similar directory structures.

The R command file.path will automatically add in the correct ”slashes” for windows, mac or
Linux

file.path("home", "projects", "Dec01")

## [1] "home/projects/Dec01"

The command path.expand will expand a path name. You can combine it with the tilde symbol
( ˜ ) which is the shortcut to your home drive (on any operating system)

path.expand("˜")
myhome <- path.expand("˜")
newdir <- file.path(path.expand("˜"), "Rwork", " colonJan13")
setwd(newdir)

Advanced Side Note: What is your system home directory
Your system HOME (˜ ) is set by your operating system. To view or change it, type

Sys.getenv("HOME")

## [1] "C:/Users/aedin/Documents"

Here ”pathName” is the directory you wish to set as your new home directory

Sys.setenv(HOME = "pathName")

5.8.2 Efficient For Loop in R (Use apply)

sapply and lapply will repeat a function over a list

myList <- list(WomenMat = women, WomenAge = women$age, beta = exp(-3:3),
logicalVec = c(TRUE, FALSE, FALSE, TRUE))

# compute the list mean for each list element
res1 <- lapply(myList, length)
print(res1)
print(paste("Class of res1:", class(res1)))

res2 <- sapply(myList, length)
print(res2)
print(paste("Class of res2:", class(res2)))

Note apply is much more computational efficient that a for loop. But if you can use built in
functions like rowMeans or colMeans these are quicker still
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myMA <- matrix(rnorm(1000000), 100000, 10, dimnames=
list(1:100000, paste("C", 1:10, sep="")))

results <- NULL
system.time(for(i in seq(along=myMA[,1]))

results <- c(results, mean(myMA[i,])))

## user system elapsed
## 24.25 0.48 24.88

results <- numeric(length(myMA[,1]))
system.time(for(i in seq(along=myMA[,1]))
results[i] <- mean(myMA[i,]))

## user system elapsed
## 2.08 0.00 2.07

system.time(myMAmean <- apply(myMA, 1, mean))

## user system elapsed
## 1.75 0.00 1.74

system.time(myMAmean <- rowMeans(myMA))

## user system elapsed
## 0 0 0

system.time(myMAsd <- apply(myMA, 1, sd))

## user system elapsed
## 3.50 0.00 3.51

system.time(myMAsd <- sqrt((rowSums((myMA-rowMeans(myMA))ˆ2)) / (length(myMA[1,])-1)))

## user system elapsed
## 0.03 0.00 0.03
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5.8.3 Handling missing values

a <- c(1:10, NA, NA)
a <- c(1:10, NA, NA)
summary(a)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 3.25 5.50 5.50 7.75 10.00 2

mean(a)

## [1] NA

mean(a, na.rm = TRUE)

## [1] 5.5
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5.9 Exercise 6: Parsing Real Data - World Population Data from Wikipedia

We demonstrated how to get data tables a URL. This means we can retrieve data from most any
table on the web. The function readHTMLTable is very flexible for this. Please retrieve the table
entitled ”Estimated world population at various dates (in millions)” (Table 13) from
http://en.wikipedia.org/wiki/World_population.

require(XML)

## Loading required package: XML

worldPop <- readHTMLTable("http://en.wikipedia.org/wiki/World_population")
names(worldPop)

## [1] "NULL"
## [2] "toc"
## [3] "NULL"
## [4] "World population milestones (USCB estimates)"
## [5] "The 10 countries with the largest total population:"
## [6] "10 most densely populated countries (with population above 1 million)"
## [7] "Countries ranking highly in terms of both total population (more than 15 million people) and population density (more than 250 people per square kilometer):"
## [8] "NULL"
## [9] "UN (medium variant 2010 revision) and US Census Bureau (December 2010) estimates[94][95]"
## [10] "UN 2008 estimates and medium variant projections (in millions)[97]"
## [11] "World historical and predicted populations (in millions)[101][102]"
## [12] "World historical and predicted populations by percentage distribution[101][102]"
## [13] "Estimated world and regional populations at various dates (in millions)"
## [14] "Starting at 500 million"
## [15] "Starting at 375 million"
## [16] "NULL"
## [17] "NULL"
## [18] "NULL"
## [19] "NULL"

worldPop <- worldPop[[13]] # Just look at Table 13

1. First tidy the data. The data are factors, its easier to edit data that are character. Apply
as.character to each column

2. Remove rows with dates before 1750. Remove the additional header in row 32.

3. Remove column 9 notes

4. Use the sub to remove the comma in the data values

5. convert the data to numeric

6. In what year did the population of Europe, Africa and Asia exceed 500 million?

7. Bonus: Plot the population growth of the World, Africa or Europe since 1750. Given this
plot, would you guess that the the population of the World, Africa or Europe would be more
likely to double again before the end of 21st century?
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5.9.1 Writing functions: More on arguments

We are equipped now with all basic tools we need for writing functions. We include a few tips on
arguments to functions.

1. Function arguments: Default values In many cases arguments have default values. For exam-
ple the qnorm(x, mean = 0, SD = 1,lower.tail = TRUE, log.p = FALSE ) has default values
for the mean, standard deviation, cdf calculation and probabilities on the original scale.

prob <- c(0.5, 0.9, 0.95, 0.975, 0.99)
args(qnorm)
qnorm(prob)
qnorm(prob, 2)
qnorm(prob, mean = 2, sd = 1)

2. Function arguments: order is important

• The argument sequence may begin in the unnamed, positional form, and specify named
arguments after the positional arguments

• If arguments to functions are given in the form name=object form, they may be given
in any order

• The argument sequence may be given in the unnamed, positional form
• For example the following statements are equivalent

prob <- c(0.5, 0.9, 0.95, 0.975, 0.99)
args(qnorm)
qnorm(p = prob, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(prob, 0, 1, log = FALSE, low = TRUE)
qnorm(prob, 0, 1, TRUE, FALSE)

3. Functions: A few points

• Sometimes you may see the parameter ”...”, this is normally when functions call other
functions and arguments are passed from one function to another.

• If commands are stored in an external R script file, say L2.R they can be executed at
any time in R

source(paste(myPath, "L2.R",sep=''))

• Once a function is defined, can call it from other functions
• The built-in functions supplied with R are a valuable resource for learning about R

programming

5.10 Writing functions: more technical discussion -Scoping

1. Scoping
Symbols in the body of a function can be divided into three classes:
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• Formal parameters (appear in the argument list of the function)
• Local variables (values are determined by the evaluation of expressions in the body of

the functions)
• Free variables (neither of the above)

In this example: x - formal parameter, y - local variable, z - free variable.

Example:

fn <- function(x) {
y <- 2 * x
print(x)
print(y)
print(z)

}

z <- 2
x <- 4
fn(x = 2)

## [1] 2
## [1] 4
## [1] 2

2. Lexical scope.

Example: function called cube.

cube <- function(n) {
sq <- function() n * n
n * sq()

}
cube(2)

## [1] 8

n <- 4
cube(2)

## [1] 8
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5.11 Options for Running memory or CPU intensive jobs in R

5.11.1 Distributed computing in R

There are two ways to split or distribute a big job. The simplest it to send jobs to different pro-
cessors on the same machine (assuming it has multiple cores, which most new machines do). The
second option is to split or parallelize a job across many machines or a cluster of machines. For
both of these, see the Bioconductor package parallel which builds upon the older R packages snow
and multicore

To install parallel use the Bioconductor package installer, BiocInstaller

library(BiocInstaller)
biocLite("parallel")

The package parallel has many functions which work like apply to distribute a computation.
For example use mclapply just like lapply to split a job over 4 cores.

library(parallel)
system.time(mclapply(1:4, function(i) mc.cores <- 4))

mclapply is a parallelized version of lapply, and will not work on windows (as far as I know) but
on Windows you can use functions parLapply, clusterApply and clusterApplyLB all in the parallel
package.

The packages has several functions for different types of apply loops including parLapply,
parSapply, and parApply which are parallel versions of lapply, sapply and apply respectively.

library(parallel)
cl <- makeCluster(3)
parLapply(cl, 1:3, sqrt)
stopCluster(cl)

For more help on this package, see the vignette

vignette("parallel", package = "parallel")

There are several other packages for distributed computing see the reviews of R packages on
CRAN task views http://cran.r-project.org/web/views/HighPerformanceComputing.
html. I have received recommendations on R packages biglm, ff and bigmemory.

5.11.2 Running R in the Cloud

One quick-start approaching to running R in the Cloud is to register for an Amazon cloud account
and then simply direct your web browser at the Bioconductor RCloud instance

http://www.bioconductor.org/help/bioconductor-cloud-ami/.
It will open a RStudio interface and it has the same look and feel as the desktop version, making

the transition pretty seamless.
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If you wish to set up your own instance, Louis Alsett at Trinity College Dublin provides
an RStudio Server Amazon Machine Image (AMI) which can install to your Cloud account see
http://www.louisaslett.com/RStudio_AMI/.

For more information about distributed computing on the Cloud based including using Hadoop
(which I think is used by Revolution Analytics) see the recent book ”parallel R” by Q Ethan McCal-
lum http://www.amazon.com/Parallel-R-Q-Ethan-McCallum/dp/1449309925
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5.12 Efficient R coding

5.12.1 What is an R script

A R script is simply a text file, with R commands. There are two ways to call these R commands,
start R and using the R function source, or at the command line using R CMD BATCH

5.12.2 What a script should look like ;-)

#####################
### Author: Mr Bob Parr
### Date: 2011-01-20
### Version: 1.0
### License: GPL (>= 3)
###
### Description: survival analysis function
#####################

## This function censors the survival data at a specific point in
## time. This is is useful if you used datasets having different
## follow-up periods.
##
## Arguments:
## -----------
## surv.time: vector of times to event occurrence [numeric]
## surv.event: vector of indicators for event occurrence [0/1]
## time.cens: point in time at which the survival data must
## be censored [integer]. Defaults value is '0'
##
## Output: [list of two items]
## --------------------------
## surv.time.cens: vector of censored times to event occurrence [numeric]
## surv.event.cens: vector of censored indicators for event occurrence [0/1]

censor.time <- function(surv.time, surv.event, time.cens=0) {
stc <- surv.time
sec <- surv.event
cc.ix <- complete.cases(stc, sec)
if(time.cens != 0) {

stc[cc.ix][surv.time[cc.ix] > time.cens] <- time.cens
sec[cc.ix][surv.time[cc.ix] > time.cens] <- 0

}
return(list("surv.time.cens"=stc, "surv.event.cens"=sec))

}

You can save this script in a file named censortime.R in your working directory. If you
want to define this function in your workspace, just type source("censortime.R").

Of course, an R script may contain more than functions, it may also contain any analytical
pipeline. Here is another example:
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#####################
### Author: Mr Bob Parr
### Date: 2011-01-20
### Version: 1.0
### License: GPL (>= 3)
###
### Description: Script fitting a Cox model on the colon data
### and writing the coefficients in a txt file
#####################

## load library
library(survival)

## load colon dataset
data(colon)

## Fit the cox model
coxm <- coxph(Surv(time, status) ˜ rx, data=colon)

## save summary in a txt file in the working directory
write.table(t(coxm$coefficients), sep="\t", file="cox_coefficients_colon.txt",
row.names=FALSE)

Save this script in a file named coxColon.R in your working directory. you can run it from
your R session using the command source(”coxColon.R”) or you can run it in batch mode from a
command line (e.g., shell console) using the command R CMD BATCH coxColon.

5.12.3 Coding Recommendations

These are the coding recommendations from the Bioconductor project, and whilst you do not have
to do these, it is handy to adopt good working practice when you learn a new language.

1. Indentation

• Use 4 spaces for indenting. No tabs.
• No lines longer than 80 characters. No linking long lines of code using ”;”

2. Variable Names

• Use camelCaps: initial lowercase, then alternate case between words.

3. Function Names

• Use camelCaps: initial lower case, then alternate case between words.
• In general avoid ’.’, as in some.func

Whilst beyond the scope of this class, R packages are written to either S3 or S4 stan-
dards. In the S3 class system, some(x) where x is class func will dispatch to this func-
tion. Use a ’.’ if the intention is to dispatch using S3 semantics.

4. Use of space

• Always use space after a comma. This: a, b, c. Not: a,b,c.
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• No space around ”=” when using named arguments to functions. This: somefunc(a=1,
b=2), not: somefunc(a = 1, b = 2).

• Space around all binary operators: a == b.

5. Comments

• Use ”##” to start comments.
• Comments should be indented along with the code they comment.

6. Misc

• Use "<-" not ”=” for assignment.

7. For Efficient R Programming, see slides and exercises from Martin

http://www.bioconductor.org/help/course-materials/2010/BioC2010/

8. R packages which tidy your code There is a package called formatR https://github.
com/yihui/formatR/wiki/ which will format all R script in a folder, indenting loops,
convert the = to -> etc. See its wiki pages above if you are interesting in testing it.

5.12.4 Debugging R Code

Use the cat() and print() functions to print values in scripts as you go. I also use the traceback to
find out what went wrong when a function doesn’t work A full list of functions for debugging R
code is beyond the scope of this lecture, but see the following useful tips from Duncan Murdoch
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/

5.12.5 End-User Messages

• message() communicates diagnostic messages (e.g., progress during lengthy computations)
during code evaluation.

• warning() communicates unusual situations handled by your code.

• stop() indicates an error condition.

• cat() or print() are used only when displaying an object to the user, e.g., in a show method.

5.12.6 system.time

If you wish to check the efficient of your code to see how long it is taking to run, use the function
system.time which gives the compute time for a function

df <- matrix(rnorm(5e+06), ncol = 20000)
system.time(apply(df, 1, mean))

## user system elapsed
## 0.24 0.00 0.23

system.time(rowMeans(df))
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## user system elapsed
## 0.01 0.00 0.01

system.time()

5.12.7 Etiquette when emailing the R mailing list

When all else failed, ask an expert. The R mailing list is a wonderful resource with a very help
bunch of experts who will be more than willing to help. But before you email, please do check
if someone has asked the same question before or if there is a simple answer to your problem in
the R manual or frequently asked questions (FAQ) documentation. The easiest way to do this is to
search on http://www.rseek.org

If you still need to ask an expert on the mailing list

• Do Send in example code

• Include information about your operating system and version of R. The easiest way to do this
is using sessionInfo() for example, see this recent post on the mailing list https://stat.
ethz.ch/pipermail/r-sig-mixed-models/2010q3/004467.html

Writing R packages

Once you have written all your functions in one or several R files, you can use the function pack-
age.skeleton to generate the necessary directories and empty help pages for your package.

package.skeleton(name = "myFirstRPackage")

For coding recommendations see http://google-styleguide.googlecode.com/
svn/trunk/google-r-style.html or http://wiki.fhcrc.org/bioc/Coding_
Standards

Hint: all the packages on CRAN and BioConductor are open source, so you can easily download
the source of any package to take a closer look at it. It may be extremely insightful to see how
experienced R developers implemented their own packages.
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Using SVN

RStudio v0.96 contains an easy interface to subversion (either GIT or SVN), but here is a detailed
guide to using svn

http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.
html#tsvn-repository-create-tortoisesvn

Step 1. Create local SVN repository

1. Open the windows explorer

2. Create a new folder and name it e.g. SVNRepository

3. Right-click on the newly created folder and select TortoiseSVN Create Repository here....

4. A repository is then created inside the new folder. Don’t edit those files yourself!!!. If you
get any errors make sure that the folder is empty and not write protected.

5. For Local Access to the Repository you now just need the path to that folder. Just remember
that Subversion expects all repository paths in the form file:///C:/SVNRepository/. Note the
use of forward slashes throughout.

6. So far this is an empty repository, even though Subversion has created several directories and
files! We need to fill it with our project files and connect it with our working project directory

Step 2: Initial import.

1. Somewhere in your hard drive create a directory (e.g. tmp) with the following three subdi-
rectories:

C:\tmp\new\branches
C:\tmp\new\tags
C:\tmp\new\trunk

2. Backup and Tidy your existing scripts and project files (C:\Projects\MyProject). (ie
delete unnecessary files)

3. Copy the contents of \MyProject into the trunk sub-directory (C:\tmp\new\trunk).

4. Import the ’new’ directory into the repository (Right-click/TortoiseSVN/Import). Select
URL as file:///C:/SVNRepository/Myproject (forward slashes!)

5. To see it works, right mouse click start TortoiseSVN/Repo-browser... see your
Imported files.. Happy days. Now you have an SVN with all your files

Step 3. Using SVN

1. Now we have created the SVN, the trick is to use it!!! Start by checking out your data. Create
a new scripts directory (or go back to your old one and delete its contents). And right mouse
click and select ”SVN Checkout”

2. To use the SVN Sending (checking in) your changes to the repository: Right-click on selected
files then ”SVN Commit”
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3. To add new files to the repository. This is a two step process: , first Right-click on selected
files then ”TortoiseSVN/Add” Then Right-click on selected files then ”SVN Commit”

4. If you wish to delete files (remember the SVN will always have a history of them) use ”Tor-
toiseSVN/Delete”

5. Happy Subversioning!
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Chapter 6

Introduction to graphics in R

To start let’s look at the basic plots that can be produced in R using the demo() function

demo(graphics)

On start up, R initiates a graphics device driver which opens a special graphics window for the
display of interactive graphics. If a new graphics window needs to be opened either win.graph() or
windows() command can be issued.

Once the device driver is running, R plotting commands can be used to produce a variety of
graphical displays and to create entirely new kinds of display.

6.1 The R function plot()

The plot() function is one of the most frequently used plotting functions in R.
IMPORTANT: This is a generic function, that is the type of plot produced is dependent on the

class of the first argument.

• Plot of Vector(s)

1. One vector x (plots the vector against the index vector)

x <- 1:10
plot(x)
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2. Scatter plot of two vectors x and y

set.seed(13)
x <- -30:30
y <- 3 * x + 2 + rnorm(length(x), sd = 20)
plot(x, y)
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• Plot of data.frame elements If the first argument to plot() is a data.frame, this can be as
simply as plot(x,y) providing 2 columns (variables in the data.frame).
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Lets look at the data in the data.frame airquality which measured the 6 air quality in New
York, on a daily basis between May to September 1973. In total there are 154 observation
(days).

airquality[1:2, ]

## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2

plot(airquality) # all variables plotted against each other pairs()
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Note most plotting commands always start a new plot, erasing the current plot if necessary.
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We’ll discuss how to change the layout of plots so you can put multiple plots on the same
page a bit later. But a simple way to put multiple plots in the same window is by splitting the
display using mfrow

Note if you give plot a vector and factor plot(factor, vector) or plot(vector factor) it will
produce a boxplot.

par(mfrow = c(1, 2))
attach(airquality)
plot(Ozone, Temp, main = "plot(Ozone, Temp)")
plot(airquality$Ozone ˜ factor(airquality$Month), col = 2:6,

sub = "plot(airquality$Ozone˜factor(airquality$Month)", ylab = "Ozone",
xlab = "month")
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detach(airquality)
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6.2 Exercise 7

Using the ToothGrowth data we read earlier. Please draw the following plot
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6.2.1 Arguments to plot

axes=FALSE Suppresses generation of axes-useful for adding your own custom axes with the
axis() function. The default, axes=TRUE, means include axes.

type= The type argument controls the type of plot produced, as follows:

type=”p” Plot individual points (the default)
type=”l” Plot lines
type=”b” Plot points connected by lines (both)
type=”o” Plot points overlaid by lines
type=”h” Plot vertical lines from points to the zero axis (high-density)
type=”n” No plotting at all. However axes are still drawn (by default) and the coordinate system is

set up according to the data. Ideal for creating plots with subsequent low-level graphics
functions.

xlab=string

ylab=string Axis labels for the x and y axes. Use these arguments to change the default labels,
usually the names of the objects used in the call to the high-level plotting function.

main=string Figure title, placed at the top of the plot in a large font.

sub=string Sub-title, placed just below the x-axis in a smaller font.

Some Examples of Plotting using different plot types and axes

xp <- 1:100/100
yp <- 3 * xpˆ2 - 2 * xp + rnorm(100, sd = 0.2)

par(mfrow = c(3, 2))
for (i in c("l", "b", "o", "h")) plot(xp, yp, type = i, main = paste("Plot type:",

i))

plot(xp, yp, type = "o", xlab = "index", ylab = "values",
main = "R simple plot")

plot(xp, yp, type = "l", axes = FALSE)
axis(1)
axis(2, at = c(-0.6, 0, 0.6, 1.2), col = "blue")
axis(3, at = c(0, 0.25, 0.5, 0.75, 1), col = "red")
axis(4, col = "violet", col.axis = "dark violet", lwd = 2)
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6.2.2 Other useful basic graphics functions

• boxplot(x) a boxplot show the distribution of a vector. It is very useful to example the distri-
bution of different variables.

boxplot(airquality)
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Note if you give plot a vector and factor plot(factor, vector) or plot(vector factor) it will
produce a boxplot.

par(mfrow = c(2, 2))
boxplot(airquality$Ozone ˜ airquality$Month, col = 2:6, xlab = "month",

ylab = "ozone", sub = "boxplot(airquality$Ozone˜airquality$Month")
title("Equivalent plots")
plot(factor(airquality$Month), airquality$Ozone, col = 2:6,

xlab = "month", ylab = "ozone", sub = "plot(factor(airquality$Month), airquality$Ozone")
plot(airquality$Ozone ˜ factor(airquality$Month), col = 2:6,

sub = "plot(airquality$Ozone˜factor(airquality$Month)")
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• barplot Plot a bar plot of the mean ozone quality by month. First use tapply to calculate the
mean of ozone by month

OzMonthMean <- tapply(airquality$Ozone, factor(airquality$Month),
mean, na.rm = TRUE)

par(mfrow = c(1, 2))
barplot(OzMonthMean, col = 2:6, main = "Mean Ozone by month")
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• barplot with confidence intervals

To plot a barplot with CI, use the plotting functions in the gpplots package.

par(mfrow = c(1, 2))
require(gplots)

## Loading required package: gplots

## Loading required package: gtools

## Loading required package: gdata

## gdata: read.xls support for 'XLS' (Excel 97-2004) files gdata:
## ENABLED.

## NA

## gdata: read.xls support for 'XLSX' (Excel 2007+) files gdata:
## ENABLED.

## Attaching package: 'gdata'

## The following object(s) are masked from 'package:stats':
##
## nobs

100



## The following object(s) are masked from 'package:utils':
##
## object.size

## Loading required package: caTools

## Loading required package: bitops

## Loading required package: grid

## Loading required package: KernSmooth

## KernSmooth 2.23 loaded Copyright M. P. Wand 1997-2009

## Loading required package: MASS

## Attaching package: 'gplots'

## The following object(s) are masked from 'package:stats':
##
## lowess

plotmeans(state.area ˜ state.region)
plotmeans(state.area ˜ state.region, connect = FALSE)
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# plotmeans( state.x77[,'Income'] ˜ state.region, ylab='Income')

Note on Windows, the gplots package will warn if it can’t find the programming language
Perl. The above functions will still work, but this notice can be removed by installing Perl
from http://www.perl.org. Linux and Mac OS X users won’t see this error as both
already have Perl installed. But it is not installed by default on windows.

To fix this notice, install Perl. I tend to select the active state distribution of Perl. It will
install into C:\perl Then run the following:

installXLSXsupport(perl = "C:/perl/bin/perl.exe")
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To see more complex examples of plotting confidence intervals or standard error on plots, see
http://wiki.stdout.org/rcookbook/Graphs/Plotting%20means%20and%
20error%20bars%20(ggplot2)/

• pie chart

pie(OzMonthMean, col = rainbow(5))
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• hist(x)- histogram of a numeric vector x with a few important optional arguments: nclass=
for the number of classes, and breaks= for the breakpoints

par(mfrow = c(1, 2))
xt <- rt(100, 3)
hist(xt)
plot(density(xt))
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Sometimes we wish to view a bimodal distribution or the distributions of two groups
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# generate 2 populations of with different mean and sd
set.seed(54321)
v1 <- rnorm(100, 0, 1)
v2 <- rnorm(100, 10, 7)

# Draw a histogram of both populations
hist(c(v1, v2), freq = FALSE, ylim = c(0, 0.4), breaks = 20,

main = "Densities of c(v1, v2)")

# Calculate a density function for each distribution plot as a line
# on the hist plot
dv1 <- density(v1)
lines(dv1, col = "red", lwd = 2)

dv2 <- density(v2)
lines(dv2, col = "blue", lwd = 2)
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• 3D scatterplot

require(scatterplot3d)

## Loading required package: scatterplot3d

data(trees)
trees[1:2,]
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## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3

s3d <- scatterplot3d(trees, type="h", highlight.3d=TRUE,
angle=55, scale.y=0.7, pch=16,
main="Example of scatterplot3d plot: Tree Data")

# Now adding some points to the "scatterplot3d"
s3d$points3d(seq(10,20,2), seq(85,60,-5),

seq(60,10,-10), col="blue",
type="h", pch=16)

# Now adding a regression plane to the "scatterplot3d"
attach(trees)
my.lm <- lm(Volume ˜ Girth + Height)
s3d$plane3d(my.lm)
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Example of scatterplot3d plot: Tree Data

 8 10 12 14 16 18 20 22

10
20

30
40

50
60

70
80

60

65

70

75

80

85

90

Girth

H
ei

gh
tV

ol
um

e

detach(trees)

• The R function venn - draws a venn diagram. Input is a list. It will draw a venn diagram
showing the intersect between 2-6 vectors in a list.

require(gplots)
sample(LETTERS, 10)

## [1] "S" "F" "M" "U" "J" "D" "X" "G" "B" "Y"

tt <- lapply(1:3, function(x) sample(LETTERS, 10))
names(tt) <- c("Lucy", "Sally", "Kate")
tt
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## $Lucy
## [1] "C" "M" "I" "F" "W" "Z" "V" "R" "X" "U"
##
## $Sally
## [1] "Z" "C" "A" "T" "S" "L" "W" "J" "Q" "M"
##
## $Kate
## [1] "F" "D" "C" "M" "P" "N" "H" "E" "Q" "G"
##

venn(tt)
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Plot 4 intersections

tt <- lapply(1:4, function(x) sample(LETTERS, 10))
names(tt) <- paste("List", 1:4)
venn(tt)
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Color plots

require(venneuler)

## Loading required package: venneuler

## Warning: package 'venneuler' was built under R version 2.15.2

## Loading required package: rJava

IntersectMatrix <- function(tt) {
allElements <- unique(unlist(tt))
outMat <- sapply(1:length(tt), function(i) allElements %in% tt[[i]])
rownames(outMat) <- allElements
colnames(outMat) <- names(tt)
return(outMat)

}
xx <- IntersectMatrix(tt)
print(xx[1:4, ])

## List 1 List 2 List 3 List 4
## Y TRUE FALSE TRUE FALSE
## A TRUE TRUE FALSE FALSE
## U TRUE FALSE TRUE FALSE
## K TRUE FALSE TRUE FALSE

plot(venneuler(xx))

List 1
List 2

List 3 List 4

It will even plot 5 intersections
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tt <- lapply(1:5, function(x) sample(LETTERS, 10))
names(tt) <- sapply(tt, function(x) paste(sort(x), collapse = ""))
venn(tt)
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6.3 Customize plot with low-level plotting commands

Sometimes the default plot doesn’t produce the plot you desire. In this case, low-level plotting
commands can be used to edit or add extra information (such as points, lines or text) to the current
plot. Some of the more useful low-level plotting functions are:

points(x, y)

lines(x, y) Adds points or connected lines to the current plot.

text(x, y, labels, ...) Add text to a plot at points given by x, y. Normally labels is an integer or char-
acter vector in which case labels[i] is plotted at point (x[i], y[i]). The default is 1:length(x).
Note: This function is often used in the sequence

The graphics parameter type=”n” suppresses the points but sets up the axes, and the text()
function supplies special characters, as specified by the character vector names for the points.

abline(a, b) Adds a line of slope b and intercept a to the current plot.

abline(h=y) Adds a horizontal line

abline(v=x) Adds a vertical line

polygon(x, y, ...) Draws a polygon defined by the ordered vertices in (x, y) and (optionally) shade
it in with hatch lines, or fill it if the graphics device allows the filling of figures.

legend(x, y, legend, ...) Adds a legend to the current plot at the specified position. Plotting char-
acters, line styles, colors etc., are identified with the labels in the character vector legend.
At least one other argument v (a vector the same length as legend) with the corresponding
values of the plotting unit must also be given, as follows:
legend( , fill=v) Colors for filled boxes
legend( , col=v) Colors in which points or lines will be drawn
legend( , lty=v) Line styles
legend( , lwd=v) Line widths
legend( , pch=v) Plotting characters

title(main, sub) Adds a title main to the top of the current plot in a large font and (optionally) a
sub-title sub at the bottom in a smaller font.

axis(side, ...) Adds an axis to the current plot on the side given by the first argument (1 to 4,
counting clockwise from the bottom.) Other arguments control the positioning of the axis
within or beside the plot, and tick positions and labels. Useful for adding custom axes after
calling plot() with the axes=FALSE argument.

To add Greek characters, either specify font type 5 (see below) or use the function expression

plot(x, cos(x), main = expression(paste("A random eqn ", bar(x)) ==
sum(frac(alpha[i] + beta[z], n))), sub = "This is the subtitle")
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Example using points lines and legend

attach(cars)
plot(cars, type = "n", xlab = "Speed [mph]", ylab = "Distance [ft]")
points(speed[speed < 15], dist[speed < 15], pch = "s", col = "blue")
points(speed[speed >= 15], dist[speed >= 15], pch = "f", col = "green")
lines(lowess(cars), col = "red")
legend(5, 120, pch = c("s", "f"), col = c("blue", "green"),

legend = c("Slow", "Fast"))
title("Breaking distance of old cars")
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detach(2)

To add formulae or Greek characters to a plot

par(mfrow = c(2, 1))
# Mean and Median Plot
x <- rexp(100, rate = 0.5)
hist(x, main = "Mean and Median of a Skewed Distribution")
abline(v = mean(x), col = 2, lty = 2, lwd = 2)
abline(v = median(x), col = 3, lty = 3, lwd = 2)
ex1 <- expression(bar(x) == sum(over(x[i], n), i == 1, n),

hat(x) == median(x[i], i == 1, n))
legend(4.1, 30, ex1, col = 2:3, lty = 2:3, lwd = 2)

x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type = "l", col = "blue", xlab = expression(phi),

ylab = expression(f(phi)))
lines(x, cos(x), col = "magenta", lty = 2)
abline(h = -1:1, v = pi/2 * (-6:6), col = "gray90")
ex2 <- expression(plain(sin) * phi, paste("cos", phi))
legend(-3, 0.9, ex2, lty = 1:2, col = c("blue", "magenta"),

adj = c(0, 0.6))
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6.4 Default parameters - par

When creating graphics, particularly for presentation or publication purposes, R’s defaults do not
always produce exactly that which is required. You can, however, customize almost every aspect of
the display using graphics parameters. R maintains a list of a large number of graphics parame-
ters which control things such as line style, colors, figure arrangement and text justification among
many others. Every graphics parameter has a name (such as ’col’, which controls colors,) and a
value (a color number, for example.) Graphics parameters can be set in two ways: either perma-
nently, affecting all graphics functions which access the current device; or temporarily, affecting
only a single graphics function call.
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The par() function is used to access and modify the list of graphics parameters for the current
graphics device. See help on par() for more details.

To see a sample of point type available in R, type

example(pch)

6.4.1 Interactive plots in R Studio - Effect of changing par

In RStudio the manipulate function accepts a plotting expression and a set of controls (e.g. slider,
picker, or checkbox) which are used to dynamically change values within the expression. When a
value is changed using its corresponding control the expression is automatically re-executed and
the plot is redrawn.

library(manipulate)
manipulate(plot(1:x), x = slider(1, 100))
manipulate(plot(cars, xlim = c(0, x.max), type = type, ann = label,

col = col, pch = pch, cex = cex), x.max = slider(10, 25, step = 5,
initial = 25), type = picker(Points = "p", Line = "l", Step = "s"),
label = checkbox(TRUE, "Draw Labels"), col = picker(red = "red",

green = "green", yellow = "yellow"), pch = picker(`1` = 1, `2` = 2,
`3` = 3, `4` = 4, `5` = 5, `6` = 6, `7` = 7, `8` = 8, `9` = 9,
`10` = 10, `11` = 11, `12` = 12, `13` = 13, `14` = 14, `15` = 15,
`16` = 16, `17` = 17, `18` = 18, `19` = 19, `20` = 20, `21` = 21,
`22` = 22, `23` = 23, `24` = 24), cex = picker(`1` = 1, `2` = 2,
`3` = 3, `4` = 4, `5` = 5, `6` = 6, `7` = 7, `8` = 8, `9` = 9,
`10` = 10))
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6.4.2 R Colors

Thus far, we have frequently used numbers in plot to refer to a simple set of colors. There are
8 colors where 0:8 are white, black, red, green, blue, cyan, magenta, yellow and grey. If you
provide a number greater than 8, the colors are recycled. Therefore for plots where other or greater
numbers of colors are required, we need to access a larger palette of colors.

plot(1:12, col = 1:12, main = "Default 9 Colors", ylab = "",
xlab = "", pch = 19, cex = 3)

text(1:12, c(1:12) + 0.75, c(1:8, 1:4))

2 4 6 8 10 12

2
4

6
8

10
12

Default 9 Colors

1

2

3

4

5

6

7

8

1

2

3

R has a large list of over 650 colors that R knows about. This list is held in the vector colors().
Have a look at this list, and maybe search for a set you are interested in.

colors()[1:10]

## [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
## [5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"
## [9] "aquamarine1" "aquamarine2"

length(colors())

## [1] 657

grep("yellow", colors(), value = TRUE)

## [1] "greenyellow" "lightgoldenrodyellow"
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## [3] "lightyellow" "lightyellow1"
## [5] "lightyellow2" "lightyellow3"
## [7] "lightyellow4" "yellow"
## [9] "yellow1" "yellow2"
## [11] "yellow3" "yellow4"
## [13] "yellowgreen"

R are has defined palettes of colors, which provide complementing or contrasting color sets.
For example look at the color palette rainbow.

example(rainbow)

Figure 6.1: There are 657 colors available using the colors() function

Figure 6.2: Colors can be defined by name, RGB, hex etc

The complete versions of the above plots, along with a complete listing of colors, RGB numbers
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or hexadecimal for each colors, the following script will generate a multi-page pdf document called
”ColorChart.pdf” which is a useful reference document on colors in R.

source("http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.R")

6.4.3 More Colors Palettes; RColorBrewer

A very useful RColorBrewer http://colorbrewer.org. This package will generate a ramp
color to provide a color palette that is sequential, diverging, or qualitative ramped, for example:

• Sequential palettes are suited to ordered data that progress from low to high. Lightness steps
dominate the look of these schemes, with light colors for low data values to dark colors for
high data values.

• Diverging palettes put equal emphasis on mid-range critical values and extremes at both ends
of the data range. The critical class or break in the middle of the legend is emphasized with
light colors and low and high extremes are emphasized with dark colors that have contrasting
hues.

• Qualitative palettes do not imply magnitude differences between legend classes, and hues are
used to create the primary visual differences between classes. Qualitative schemes are best
suited to representing nominal or categorical data.

To see more about RColorBrewer run the example

require(RColorBrewer)

## Loading required package: RColorBrewer

par(mfrow = c(1, 3))
display.brewer.all(type = "qual")
display.brewer.all(type = "seq")
display.brewer.all(type = "all")
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I use RColorBrewer to produce nicer colors in clustering heatmap. For example lets look at
results of wine-tasting of French red wines.

load the library ade4

## Loading required package: ade4

## Warning: package 'ade4' was built under R version 2.15.2

## Attaching package: 'ade4'

## The following object(s) are masked from 'package:base':
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##
## within

data(bordeaux) ## this is a data.frame
bordeaux <- as.matrix(bordeaux) ## Convert to a matrix
bordeaux

## excellent good mediocre boring
## Cru_Bourgeois 45 126 24 5
## Grand_Cru_classe 87 93 19 1
## Vin_de_table 0 0 52 148
## Bordeaux_d_origine 36 68 74 22
## Vin_de_marque 0 30 111 59

heatmap(bordeaux) # Using default colors
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# with a color palette from RColorBrewer
require(RColorBrewer)
hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(500)
heatmap(bordeaux, col = hmcol)
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6.5 Interacting with graphics

R also provides functions which allow users to extract or add information to a plot using a mouse
via locator() and verb+identify() functions respectively.

plot(1:20, rt(20, 1))
text(locator(1), "outlier", adj = 0)

Waits for the user to select locations on the current plot using the left mouse button.

attach(women)
plot(height, weight)
identify(height, weight, women)
detach(2)

Allow the user to highlight any of the points (identify(x,y,label)) defined by x and
y (using the left mouse button) by plotting the corresponding component of labels nearby (or the
index number of the point if labels is absent).

Right mouse click, to ”stop”.
Identify members in a hierarchical cluster analysis of distances between European cities

hca <- hclust(eurodist)
plot(hca, main = "Distance between European Cities")
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6.5.1 Exercise 8 - Plotting

Using the women dataset

1. Set the plot layout to be a 2 x 2 grid (ie 2 rows, 2 columns)

2. Draw weight on the Y axis and height on the X axis.

3. Switch the orientation, Draw weight on the X axis and height on the Y axis.

4. Drawing a new plot, set the pch (point type) to be a solid circle, and color them red. Add a
title ”study of Women” to the plot

5. Drawing another plot, set the pch (point type) to be a solid square, Change the X axis label
to be ”Weight of Women” and make the point size (using the parameter cex) larger to 1.5
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6.6 Saving plots

6.6.1 Rstudio

In RStudio, there is a simple interface to export plots. Click on the ”Export” button in the plot
window.

6.6.2 Devices

R can generate graphics (of varying levels of quality) on almost any type of display or printing
device. Before this can begin, however, R needs to be informed what type of device it is dealing
with. This is done by starting a device driver. The purpose of a device driver is to convert graphical
instructions from R (”draw a line,” for example) into a form that the particular device can under-
stand. Device drivers are started by calling a device driver function. There is one such function for
every device driver: type help(Devices) for a list of them all.

The most useful formats for saving R graphics:

postscript() For printing on PostScript printers, or creating PostScript graphics files.

pdf() Produces a PDF file, which can also be included into PDF files.

jpeg() Produces a bitmap JPEG file, best used for image plots.

6.6.3 Difference between vector and pixel images

Note there is a big difference between saving files in jpeg or postscript files. Image files save in
jpg, bmp, gif etc are pixel image files, these are like photographs, where you can just select a line
and change its color. By contact vector graphic, such as postscript, or windows meta files can be
imported into drawing packages such as Adobe illustrator (or some even into PowerPoint), you can
double click on an axes, and since its a vector graphic you can change the color of the line easily.

Format * Type Description (name) Designed for
TIFF, TIF image Tagged Image File Format High resolution printing of images, even to

postscript printers
PNG image Portable network graphic High resolution bitmap image,Screen dis-

play, printing
BMP image bitmap image Screen display under Windows
GIF image Graphic Interchange Format Screen display especially online im-

ages/Web
JPEG, JPG image Joint Photographic Experts Group Screen display especially online im-

ages/Web
EPS, PS vector (Encapsulated) postscript High resolution printing of illustrations,

Printing to PostScript printers/Imagesetters
PDF vector Portable Document File High resolution printing of illustra-

tions, Printing to PostScript/PDF print-
ers/Imagesetters

EMF, WMF ** vector (Enhanced) Windows Metafile Screen display under Windows printing to
non-PostScript printer

*

For more information on image file format see http://en.wikipedia.org/wiki/Image_file_formats

** EMF files are a vector like files that can be inserted into PowerPoint. To insert an EMF image in a PowerPoint slide, click on

Insert-Picture-From File and locate the file. Click OK. This will add the EMF file to your page. Right mouse click on the image to

”ungroup”, now you can select lines/points to change colors/widths etc.
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When in doubt, I save files an postscript format (eps), as several journals request this format.
EPS files can be open directly in adobe illustrator or other vector editing graphics packages.

In R, to save the current image to file. Either use the file menu File -> Save as. Or use the
functions dev2bitmap, dev.copy2eps or dev.copy(device, file), where device can be one of png, jpeg
or pdf and file is your filename. For example:

plot(1:10, col = "red", pch = 19)
dev.copy(png, file = "test.png")
dev.off()

plot(1:10, col = "red", pch = 19)
dev.copy(pdf, file = "test.pdf")
dev.off()

To find out more about the image formats that can be saved in R, see the help on ?Devices.
If you wish to write an image directly to a file, without ”seeing” the plot screen (called X11 or

Quartz depending on the operating system). Use the functions pdf(), postscript(), jpeg() with the
syntax:

pdf(file = "myplot.pdf")
plot(1:10, col = "blue", xlab = "X axis", ylab = "Y axis")
dev.off()

Remember it is very important to type dev.off in order to properly save the file
To list the current graphics devices that are open use dev.cur. When you have finished with a

device, be sure to terminate the device driver by issuing the command dev.off().
If you have open a device to write to for example pdf or png, dev.off will ensures that the

device finishes cleanly; for example in the case of hard-copy devices this ensures that every page
is completed and has been sent to the printer or file.

Example:

myPath <- file.path("P:/Bio503/Plots")
pdf(file = paste(myPath, "nicePlot.pdf", sep = ""))
x <- seq(0, 2 * pi, length = 100)
y <- sin(3 * x) + cos(x) + rnorm(100, sd = 0.2)
plot(x, y)
dev.off()

6.7 Useful Graphics Resources

If you have plots saved in a non-vector format, we have found the web-site VectorMagic from
Stanford http://vectormagic.stanford.edu/ to be very useful. It will convert bmp or
jpeg files to vector format.

The free software ImageMagick http://www.imagemagick.org can be downloaded
and is also useful for converting between image format.
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Chapter 7

Advanced Graphics

7.1 Advanced plotting using Trellis; ggplots2, Lattice

One of the strengths of R is the variety and quality of its graphics capabilities. Both Lattice
and ggplots2 offer trellis (layered graphics) which are both prettier and much more flexible than
basic R plotting. Between these two packages, there is no clear winner, but like Lattice other say
ggplots2 is more flexible. But it is worth investigating these packages if you wish to generate nice
R graphics.

7.1.1 ggplots2

qplot is the basic plotting function in the ggplot2 package and is a convenient wrapper for creating a
number of different types of plots using a consistent calling scheme. See http://had.co.nz/
ggplot2/book/qplot.pdf for the chapter in the ggplot2 book which describes the usage of
qplot in detail.

A nice introductions to ggplots is written by its author Hadley Wickham and is available from
http://www.ceb-institute.org/bbs/wp-content/uploads/2011/09/handout_
ggplot2.pdf. The following examples are taking from that tutorial

Basic ”Quick Plot” aka qplot in ggplots2

require("ggplot2")

## Loading required package: ggplot2

data(mtcars)
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
## carb
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## Mazda RX4 4
## Mazda RX4 Wag 4
## Datsun 710 1
## Hornet 4 Drive 1
## Hornet Sportabout 2
## Valiant 1

levels(mtcars$cyl)

## NULL

qplot(wt, mpg, data = mtcars, colour = cyl)
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qplot(wt, mpg, data = mtcars, colour = factor(cyl))
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mtcars is a dataset from 1974 Motor Trend US magazine, and comprises fuel consumption and
10 aspects of automobile design and performance (eg miles/gallon, number of cylinders, displace-
ment, gross horsepower, weight, seconds to complete a quarter mile, etc) for 32 automobiles. In
the above plot we see a plot of weight x miles per gallon given the number of cylinders in the car.

In the above plot, we view cylinder by color, but it could also be by shape or size

qplot(wt, mpg, data = mtcars, shape = factor(cyl))
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qplot(wt, mpg, data = mtcars, size = factor(cyl), colour = factor(cyl))
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The function mfrow and layout don’t work with ggplots2, so here is a little script to make
layout of multiple plots using ggplots2 (acknowledgement to Stephen Turner). First assign each
ggplot2 plots to an object, and then use the arrange function to display two or more.
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arrange <- function(..., nrow = NULL, ncol = NULL, as.table = FALSE) {
vp.layout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
dots <- list(...)
n <- length(dots)
if (is.null(nrow) & is.null(ncol)) {

nrow <- floor(n/2)
ncol <- ceiling(n/nrow)

}
if (is.null(nrow)) {

nrow <- ceiling(n/ncol)
}
if (is.null(ncol)) {

ncol <- ceiling(n/nrow)
}
## NOTE see n2mfrow in grDevices for possible alternative

grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow, ncol)))
ii.p <- 1
for (ii.row in seq(1, nrow)) {

ii.table.row <- ii.row
if (as.table) {

ii.table.row <- nrow - ii.table.row + 1
}
for (ii.col in seq(1, ncol)) {

ii.table <- ii.p
if (ii.p > n)

break
print(dots[[ii.table]], vp = vp.layout(ii.table.row, ii.col))
ii.p <- ii.p + 1

}
}

}

p1 <- qplot(wt, mpg, data = mtcars, shape = factor(cyl))
p2 <- qplot(wt, mpg, data = mtcars, size = factor(cyl), colour = factor(cyl))
# Arrange and display the plots into a 2x1 grid
arrange(p1, p2, nrow = 1)
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Using Facets to plot several plots

qplot(wt, mpg, data = mtcars, facets = cyl ˜ .)
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More complex Facets to view cross-tabulated categories. For example you would expect a
strong interaction between cylinder and horsepower.

table(mtcars$cyl, mtcars$hp)

##
## 52 62 65 66 91 93 95 97 105 109 110 113 123 150 175 180 205 215
## 4 1 1 1 2 1 1 1 1 0 1 0 1 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 1 0 3 0 2 0 1 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 1 1
##
## 230 245 264 335
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## 4 0 0 0 0
## 6 0 0 0 0
## 8 1 2 1 1

qplot(wt, mpg, data = mtcars, facets = cyl ˜ hp, xlab = "Weight",
ylab = "Miles per Gallon")

52 62 65 66 91 93 95 97 105 109 110 113 123 150 175 180 205 215 230 245 264 335

10

15

20

25

30

35

10

15

20

25

30

35

10

15

20

25

30

35

4
6

8

2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345 2345
Weight

M
ile

s 
pe

r 
G

al
lo

n

In the scatterplot examples above, we implicitly used a point geom, the default when you supply
two arguments to qplot(). qplots can produce several other plots, if a different geom is defined

(modified from ggplots2: Elegant Graphics for Data Analysis, Chapter 3)
When given a single vector, the default geom is Histogram. Defining geom as density will

instead draw a density (smoothed histogram)
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Plot Geom Other features
scatterplot point

bubblechart point size defined by variable
barchart bar

box-whisper boxplot
line line

p1 <- qplot(wt, data = mtcars)
p2 <- qplot(wt, data = mtcars, binwidth = 0.01)
p3 <- qplot(wt, data = mtcars, geom = "density")
p4 <- qplot(wt, data = mtcars, geom = "density", colour = factor(cyl))
# Arrange and display the plots into a 2x1 grid
arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)

## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to
## adjust this.
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Geoms - point and smooth and coordpolar(PieCharts)

p1 <- qplot(wt, mpg, data = mtcars, geom = "line")
p2 <- qplot(wt, mpg, data = mtcars, geom = c("point", "smooth"),

method = "lm")

px <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +
geom_bar(width = 1)

# map a barchart to a polar coordinate system
p3 <- px + coord_polar()
p4 <- px + coord_polar(theta = "y")
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arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)
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7.1.2 lattice

Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure.
They offer abilities similar to those in the S-PLUS trellis library.

The lattice package sits on top of the grid package. To use lattice graphics, both these packages
must be installed. Providing it is installed, the grid package will be loaded automatically when
lattice is loaded.

Resources for lattice
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• Book on Lattice http://lmdvr.r-forge.r-project.org/figures/figures.
html

• See examples at http://cm.bell-labs.com/cm/ms/departments/sia/project/
trellis/display.examples.html

• To get on help on lattice functions, use help just like you would do for any package help(package
= lattice)

7.1.3 Examples that Present Panels of Scatterplots using xyplot()

The basic function for drawing panels of scatterplots is xyplot(). We will use the data frame
’ChickWeight’ to demonstrate the use of xyplot(). The ’ChickWeight’ data frame has 578 rows
and 4 columns from an experiment on the effect of diet on early growth of chicks. This data frame
contains the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was made.

Chick an ordered factor with levels ’18’ ¡ ... ¡ ’48’ giving a unique identifier for the chick. The
ordering of the levels groups chicks on the same diet together and orders them according to
their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,...,4 indicating which experimental diet the chick received.

Figure below shows the style of graph that one can get from xyplot().

7.1.4 Simple use of xyplot

The lattice function xyplot() is the most commonly used lattice function, and plots pairs of vari-
ables. Whilst designed mainly for two continuous variates, factors can be supplied as well, in
which case they will simply be coerced to numeric.

library(lattice)
xyplot(weight ˜ Time | Diet, data = ChickWeight) # Simple use of xyplot
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Here is the statement used to get a figure with the observations for the same Chick connected
via lines.

xyplot(weight ˜ Time | Diet, data = ChickWeight, panel = panel.superpose,
groups = Chick, type = "b")
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This function shows the defaults for the graphical display of Trellis displays

show.settings()

An incomplete list of lattice Functions

splom( ˜ data.frame) # Scatterplot matrix
bwplot(factor ˜ numeric , . .) # Box and whisker plot
dotplot(factor ˜ numeric , . .) # 1-dim. Display
stripplot(factor ˜ numeric , . .) # 1-dim. Display
barchart(character ˜ numeric,...)
histogram( ˜ numeric, ...) # Histogram
densityplot( ˜ numeric, ...) # Smoothed version of histogram
qqmath(numeric ˜ numeric, ...) # QQ plot
splom( ˜ dataframe, ...) # Scatterplot matrix
parallelplot( ˜ dataframe, ...) # Parallel coordinate plots

In each instance, conditioning variables can be added.
Examples:

x <- 1:10
y <- 1:10
g <- factor(1:10)
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barchart(y ˜ g | 1)
y
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More examples:Lattice density histogram splom and more

angle <- seq(0, 2 * pi, length = 21)[-21]
xx <- cos(angle)
yy <- sin(angle)
gg <- factor(rep(1:2, each = 10))

bwplot(yy ˜ gg | 1)
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histogram(˜yy | 1)
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xyplot(xx ˜ yy | 1)

yy

xx

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

1

splom(˜data.frame(x = xx[1:10], y = yy[1:10]) | 1, pscales = 0)

Scatter Plot Matrix

x

y

1
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parallelplot(˜data.frame(x = xx[1:10], y = yy[1:10]) | 1)

x

y

Min Max

1

More than two variables

aaa <- seq(0, pi, length = 10)
xxx <- rep(aaa, 10)
yyy <- rep(aaa, each = 10)
zzz <- sin(xxx) + sin(yyy)

levelplot(zzz ˜ xxx + yyy | 1, colorkey = FALSE)
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contourplot(zzz ˜ xxx + yyy | 1, labels = FALSE, cuts = 8)
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cloud(zzz ˜ xxx + yyy | 1, zlab = NULL, zoom = 0.9, par.settings = list(box.3d = list(lwd = 0.01)))

xxxyyy

1

wireframe(zzz ˜ xxx + yyy | 1, zlab = NULL, zoom = 0.9, drape = TRUE,
par.settings = list(box.3d = list(lwd = 0.01)), colorkey = FALSE)

xxxyyy

1
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Note whilst, lattice plots are highly customizable. Note: the base graphics settings; in partic-
ular, par() settings usually have no effect on lattice plots. Use trellis.par.get() and trellis.par.set()
to change default plot parameters.
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7.2 GoogleVis and GoogleMaps visualization

There are multiple visualization tools available within the googleVis library. These include the
Hans Rosling type bubble plots. See http://code.google.com/apis/visualization/
documentation/gallery/motionchart.html

See http://blog.revolutionanalytics.com/graphics/ for some examples of
R code

# install.packages('googleVis')
library(googleVis)

## Loading required package: RJSONIO

## Welcome to googleVis version 0.2.16
##
## Please read the Google API Terms of Use before you use the package:
## http://code.google.com/apis/terms/index.html
##
## Type ?googleVis to access the overall documentation and
## vignette('googleVis') for the package vignette. You can execute a
## demo of the package via: demo(googleVis)
##
## More information is available on the googleVis project web-site:
## http://code.google.com/p/google-motion-charts-with-r/
##
## Contact: <rvisualisation@gmail.com>
##
## To suppress the this message use:
## suppressPackageStartupMessages(library(googleVis))

M <- gvisMotionChart(Fruits, "Fruit", "Year")
plot(M)
cat(M$html$chart, file = "tmp.html")

GoogleVis also provide support for Maps and spatial visualization of trends.

# Pretty plots competition
library(googleVis)
help(package = "googleVis")

# looking at all loaded datasets
data(state)
states <- as.data.frame(state.x77)
states$location <- rownames(states)
attach(states)

## The following object(s) are masked from 'package:googleVis':
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Figure 7.1: Results of Fruits data using GoogleViz gvisMotionChart
This is actually an interactive animated html file

##
## Population

states.Inc <- gvisGeoMap(states, locationvar = "location",
numvar = "Income", options = list(region = "US", dataMode = "regions",

colors = "[0xBEBEBE, 0x00008B]"))
# note this is per capita income by state from 1974

plot(states.Inc)

states.Illit <- gvisGeoMap(states, locationvar = "location",
numvar = "Illiteracy", options = list(region = "US", dataMode = "regions",

colors = "[0xBEBEBE, 0x8B0000]"))
plot(states.Illit)

merge <- gvisMerge(states.Inc, states.Illit, horizontal = FALSE)
merge.plot <- plot(merge)
detach(states)
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Figure 7.2: This is actually an interactive html file, if you hover over a state you see its information

7.2.1 Geocodes and maps

The package RgoogleMaps which provide a comfortable R interface to query the Google server
for static maps, and to also use the map as a background image to overlay plots within R. An-
other packages is osmar (OpenStreetMap and R) which package provides infrastructure to access
OpenStreetMap data.

The package ggmap is written by Hadley Wickham, who also authors the ggplots packages.
Therefore it has particularly nice graph capabilities. It has functions to extracts maps and provides
an interface to query geocode (location data) from Google Maps, OpenStreetMap, or Stamen Maps
server.

require(ggmap)
# longtitude, latitude from google maps api
HSPH <- geocode("Harvard School of Public Health")
mapdist("Harvard School of Public Health", "New York", mode = "walking")
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The qmap has a layered appear to maps similar to qplot in ggplot2. It allows you to extract a
map from google Maps or the other map distribution, and layer on data. A in-depth review of the
functions in ggmap is beyond the scope of this course, but I am happy to demo these should there
be sufficient interest.

There are online demonstrations on my website
http://bcb.dfci.harvard.edu/˜aedin/courses/R/CDC/maps.html
and of worldwide species diversity http://vijaybarve.wordpress.com/tag/rgbif/
and Napa valley vineyard http://blog.revolutionanalytics.com/2012/07/making-beautiful-maps-in-r-with-ggmap.

html
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7.3 Graph theory and Network visualization using R packages network and
igraph

# install.packages(network)
library(network)

## network: Classes for Relational Data Version 1.7-1 created on March
## 1, 2012. copyright (c) 2005, Carter T. Butts, University of
## California-Irvine Mark S. Handcock, University of Washington David
## R. Hunter, Penn State University Martina Morris, University of
## Washington For citation information, type citation("network").
## Type help("network-package") to get started.

m <- matrix(rbinom(100, 1, 1.5/9), 10)
diag(m) <- 0
g <- network(m)
# Plot the graph
plot(g)

# Load Padgett's marriage data
data(flo)
nflo <- network(flo)
# Display the network, indicating degree and flagging the Medicis
plot(nflo, vertex.cex = apply(flo, 2, sum) + 1, usearrows = FALSE,
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vertex.sides = 3 + apply(flo, 2, sum), vertex.col = 2 + (network.vertex.names(nflo) ==
"Medici"))

using the package igraph

# install.packages('igraph')
library(igraph)

## Attaching package: 'igraph'

## The following object(s) are masked from 'package:network':
##
## %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
## get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
## is.directed, list.edge.attributes, list.vertex.attributes,
## set.edge.attribute, set.vertex.attribute

adj.mat <- matrix(sample(c(0, 1), 9, replace = TRUE), nr = 3)
g <- graph.adjacency(adj.mat)
plot(g)
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7.4 Tag Clouds, Literature Mining

The following script will create tag cloud given a list of PubMed abstract identifiers.

## -------------------------------------------------------- Given a
## list of PMIDs get their annotation Aedin, Dec 2011 To Run given
## pmids2tagcloud a list of pmids eg pmids=c(10521349, 10582678,
## 11004666, 11108479, 11108479, 11114790, 11156382, 11156382,
## 11156382, 11165872) pmids2tagcloud(pmids)
## ---------------------------------------------------------
getPMIDAnnot <- function(pmidlist) {

require(annotate)
require(XML)
print("Using annotate and XML to get info on each PMID")
pubmedRes <- xmlRoot(pubmed(pmidlist))
numAbst <- length(xmlChildren(pubmedRes))
absts <- list()
for (i in 1:numAbst) {

absts[[i]] <- buildPubMedAbst(pubmedRes[[i]])
}

# unlist(lapply(absts, function(x) authors(x)[1]))

## Write Output to PMIDInfo
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PMIDInfo <- data.frame(matrix(NA, nrow = length(pmidlist)))
PMIDInfo$FirstAuthor <- unlist(lapply(absts, function(x) authors(x)[1]))
PMIDInfo$Journal <- unlist(lapply(absts, function(x) journal(x)[1]))
PMIDInfo$pubDate <- unlist(lapply(absts, function(x) pubDate(x)[1]))
PMIDInfo$articleTitle <- unlist(lapply(absts, function(x) articleTitle(x)[1]))
PMIDInfo$abstText <- unlist(lapply(absts, function(x) abstText(x)[1]))
PMIDInfo$PubMedID <- unlist(lapply(absts, function(x) pmid(x)[1]))
rownames(PMIDInfo) <- PMIDInfo$PubMedID
PMIDInfo <- PMIDInfo[, -1]

# Res<-cbind(outMat, Total= apply(outMat, 1, sum), PMIDInfo[,c(5,
# 1,3,4,2)]) Res$pubDate<-unlist(strsplit(Res$pubDate, ' '))[seq(2,
# length(Res$pubDate)*2, 2)] names(Res)[10] ='Year' print(Res)

# print(PMIDInfo[1:2,])
return(PMIDInfo)

}

pmids2tagcloud <- function(pmids, addTitle = TRUE, colorPalette = c("orange",
"cyan", "green4", "maroon", "slateblue")) {
require(tm)
require(wordcloud)
require(RColorBrewer)
print(paste("Using tm and wordcloud to create tag cloud from", length(pmids),

"abstracts"))
pubmedAbsts <- getPMIDAnnot(as.character(unique(pmids)))
words <- tolower(unlist(strsplit(as.character(pubmedAbsts$abstText),

" ")))
# remove parentheses, comma, [semi-]colon, period, quotation marks
words <- words[-grep("[\\)\\(,;:\\.\\'\\\"]", words)]
words <- words[-grep("ˆ\\d+$", words)]
words <- words[!words %in% stopwords()]
wt <- table(words)

## Use R Color Brewer Colors
pal <- brewer.pal(9, "BuGn")
pal <- pal[-(1:4)]

wordcloud(names(wt), as.vector(wt), colors = colorPalette)
if (addTitle)

title(main = paste("TagCloud generated from", length(pmids),
"PubMed Abstracts"), sub = paste("PMIDS:", paste(pmids, collapse = " "),
sep = ""), cex.sub = 0.5, col.main = "green4", col.sub = "gray")

}
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pmids <- c(10521349, 10582678, 11004666, 11108479, 11108479,
11114790, 11156382, 11156382, 11156382, 11165872)

pmids2tagcloud(pmids)

## [1] "Using tm and wordcloud to create tag cloud from 10 abstracts"

## [1] "Using annotate and XML to get info on each PMID"

ge
ne

data
set

human ap−1
vivo

ga
dd

15
3

tissue

genes
using

microdissection
antisense

blots

expression
gradela

se
r

analysis

dna

classes

normal

cellular

samples

mcf+sod

approach

signaling

sets

mnsod
pu

lm
on

ar
ycapture

consists

profile

c−jun

determine

diffuse
tumor

breast

up−regulated

cdna

acute

cells

measured
mnsod−induced

revealed

phenotypic

cell

cl
as

s

pr
ov

id
e

found

rat

cancer

m
ol

ec
ul

ar

results

microarray

arrayspecific

development

target

classification

leukemia

et

TagCloud generated from 10 PubMed Abstracts

PMIDS:10521349 10582678 11004666 11108479 11108479 11114790 11156382 11156382 11156382 11165872

7.5 Other visualization resources

Note whilst we have only looked at ”static” plotting, R can generate dynamic plots using R pack-
ages JavaGD or ggobi and http://www.ggobi.org/. Dynamic plots can be interactively
manipulated, rotated or animated. see http://cran.r-project.org/src/contrib/
Views/Graphics.html.

Other visualization resources that you may like to explore

1. Rggobi http://www.ggobi.org/rggobi/ 3D visualization of multidimensional data
http://www.ggobi.org/rggobi/introduction.pdf
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2. For a discussion on different graph packages see

using Rgraphviz http://www2.warwick.ac.uk/fac/sci/moac/students/peter_
cock/r/rgraphviz/ or see the many examples on the Bioconductor website

a recent discussion online about the topic: http://stats.stackexchange.com/
questions/6155/graph-theory-analysis-and-visualization

R cytoscape http://db.systemsbiology.net:8080/cytoscape/RCytoscape/
vignette/RCytoscape.html

3. Additional demos available in the graphics package: demo(image), demo(persp) and exam-
ple(symbol).

The following web pages have many examples (and code) to produce different R plots. Browse
through the plots, see what you like and try some.

• Basic plotting examples from Paul Murrell book, R Graphics http://www.stat.auckland.
ac.nz/˜paul/RGraphics/rgraphics.html

• The homepage of the R package ggplot2 http://had.co.nz/ggplot2/. This pack-
age produces nice plots and can easily add color scale legend bars to plots

• rggobi and ggplot2 run workshops in R graphics. Their course website provides examples
of basic and advanced plots, animated movies, lectures and R code to reproduce the plots at
http://lookingatdata.com/

• The R Gallery wiki provides examples of R plots and code to reproduce these http:
//addictedtor.free.fr/graphiques/. Here is one random sample from this
website:

7.6 Summary on plotting

• Basic plotting:

– plot(), pairs(), histogram, pie etc

– Low-level plotting: points(), lines(), abline()
low-level other: text(), legend(), title()

• Manipulating the plotting window

– Temporary changes to just one command: “. . .” argument to plot() function
– To view or change default plot settings: par(). This will change the settings for all

subsequent plot commands.

• Advanced plotting using ggplots2 library.

158

http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/rgraphviz/
http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/rgraphviz/
http://stats.stackexchange.com/questions/6155/graph-theory-analysis-and-visualization
http://stats.stackexchange.com/questions/6155/graph-theory-analysis-and-visualization
http://db.systemsbiology.net:8080/cytoscape/RCytoscape/vignette/RCytoscape.html
http://db.systemsbiology.net:8080/cytoscape/RCytoscape/vignette/RCytoscape.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://had.co.nz/ggplot2/
http://lookingatdata.com/
http://addictedtor.free.fr/graphiques/
http://addictedtor.free.fr/graphiques/


Chapter 8

Statistical Analysis, linear models and
survival analysis in R

8.1 This section

1. Basic statistics such as t-test, χ2,. . .

2. Intro to linear models in R

3. Model formulae and model options

4. Output and extraction from fitted models

5. model.matrix, contrasts

6. Models considered:

• Linear regression: lm()
• Logistic regression: glm(), Poisson regression: glm()
• Survival analysis: Surv(), coxph() in the survival and functions in the package surv-

comp

7. Advanced model options are covered in detail in the recommended text of Venables and
Ripley.

• Generalized Linear Mixed-Effects Models lmer, lme
• Generalized additive models gam()
• Non-Linear models nls, nlme
• Other useful packages lme4, gmodels
• The arm package contains R functions for Bayesian inference using lm, glm, mer and

polr objects. The bayesm is aims at marketing and micro economics fields but includes
functions for Bayes Regression and Hierarchical Linear Models.

• The R package doBy is useful for groupwise computations of summary statistics. Facil-
ities for groupwise computations of summary statistics and other facilities for working
with grouped data (similar to what can be achieved by proc means or proc summary of
the sas system).

159



• See http://cran.r-project.org/src/contrib/Views/ for lists of more
R packages.
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8.2 Basic Statistics

8.2.1 Continuous Data: t test

The t.test performs a one or two sample t test. To see the arguments of t.test, look at the help
documentation ?t.test

Arguments include alternative which is one of ”two.sided”, ”less” or ”greater”, and var.equal
which is a logical (FALSE or TRUE) to indicate unequal or equal variance (default is unequal).
The input to t.test is one vector (one sample t test), two vectors or a formula (two sample t test). A
formula is given by y ∼ x, where the tilde ’∼’ operator specifies ”described by”

One sample t test:

data(ChickWeight)
ChickWeight[1:2, ]

## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1

t.test(ChickWeight[, 1], mu = 100)

##
## One Sample t-test
##
## data: ChickWeight[, 1]
## t = 7.38, df = 577, p-value = 5.529e-13
## alternative hypothesis: true mean is not equal to 100
## 95 percent confidence interval:
## 116.0 127.6
## sample estimates:
## mean of x
## 121.8
##

Two sample t test. Note these are equivalent

t.test(ChickWeight$weight[ChickWeight$Diet == "1"], ChickWeight$weight[ChickWeight$Diet ==
"2"])

##
## Welch Two Sample t-test
##
## data: ChickWeight$weight[ChickWeight$Diet == "1"] and ChickWeight$weight[ChickWeight$Diet == "2"]
## t = -2.638, df = 201.4, p-value = 0.008995
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -34.900 -5.042
## sample estimates:
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## mean of x mean of y
## 102.6 122.6
##

t.test(weight ˜ Diet, data = ChickWeight, subset = Diet %in%
c("1", "2"))

##
## Welch Two Sample t-test
##
## data: weight by Diet
## t = -2.638, df = 201.4, p-value = 0.008995
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -34.900 -5.042
## sample estimates:
## mean in group 1 mean in group 2
## 102.6 122.6
##

For a pairwise comparisons or multiple testing use:

pairwise.t.test(ChickWeight$weight, ChickWeight$Diet,
p.adjust.method="bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: ChickWeight$weight and ChickWeight$Diet
##
## 1 2 3
## 2 0.06838 - -
## 3 2.5e-06 0.14077 -
## 4 0.00026 0.95977 1.00000
##
## P value adjustment method: bonferroni

8.2.2 adjusting for multiple testing

The p.adjust can be used to correct p-values for multiple testing. Adjustment methods include the
Bonferroni correction in which the p-values are multiplied by the number of comparisons. Less
conservative corrections are also included by Holm (1979) (”holm”), Hochberg (1988) (”hochberg”),
Hommel (1988) (”hommel”), Benjamini and Hochberg (1995) (”BH” or its alias ”fdr”), and Ben-
jamini and Yekutieli (2001) (”BY”)
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x <- rnorm(50, mean = c(rep(0, 25), rep(3, 25)))
p <- 2 * pnorm(sort(-abs(x)))

pVal <- round(p, 3)
Bonferroni <- round(p.adjust(p, "bonferroni"), 3)

## FDR and BH are equivalent

FDR <- round(p.adjust(p, "fdr"), 3)
BH <- round(p.adjust(p, "BH"), 3)

res <- cbind(none = pVal, Bonferroni = Bonferroni, FDR = FDR,
BH = BH)

res <- res[order(res[, "Bonferroni"]), ]
print(res[1:20, ])

## none Bonferroni FDR BH
## [1,] 0.000 0.000 0.000 0.000
## [2,] 0.000 0.000 0.000 0.000
## [3,] 0.000 0.000 0.000 0.000
## [4,] 0.000 0.001 0.000 0.000
## [5,] 0.000 0.001 0.000 0.000
## [6,] 0.000 0.002 0.000 0.000
## [7,] 0.000 0.004 0.001 0.001
## [8,] 0.000 0.004 0.001 0.001
## [9,] 0.000 0.015 0.002 0.002
## [10,] 0.000 0.019 0.002 0.002
## [11,] 0.001 0.034 0.003 0.003
## [12,] 0.001 0.036 0.003 0.003
## [13,] 0.001 0.053 0.004 0.004
## [14,] 0.001 0.054 0.004 0.004
## [15,] 0.005 0.241 0.015 0.015
## [16,] 0.005 0.257 0.015 0.015
## [17,] 0.005 0.261 0.015 0.015
## [18,] 0.006 0.300 0.017 0.017
## [19,] 0.010 0.481 0.025 0.025
## [20,] 0.014 0.710 0.036 0.036

@

8.2.3 Continuous Data: One- and two-way analysis of variance

To run a one-way analysis of variance, use lm. To use lm, the input is a vector and a factor. Note
here that Diet is a factor. The function lm provides limited information. Use summary to provide
a short summary of the distribution of each of the variables. Extract the analysis of variance with
anova.
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lmDiet <- lm(weight ˜ Diet, data = ChickWeight)
lmDiet

##
## Call:
## lm(formula = weight ˜ Diet, data = ChickWeight)
##
## Coefficients:
## (Intercept) Diet2 Diet3 Diet4
## 102.6 20.0 40.3 32.6
##

summary(lmDiet)

##
## Call:
## lm(formula = weight ˜ Diet, data = ChickWeight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -104.0 -53.6 -13.6 40.4 230.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.65 4.67 21.96 < 2e-16 ***
## Diet2 19.97 7.87 2.54 0.011 *
## Diet3 40.30 7.87 5.12 4.1e-07 ***
## Diet4 32.62 7.91 4.12 4.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 69.3 on 574 degrees of freedom
## Multiple R-squared: 0.0535,Adjusted R-squared: 0.0485
## F-statistic: 10.8 on 3 and 574 DF, p-value: 6.43e-07
##

anova(lmDiet)

## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## Diet 3 155863 51954 10.8 6.4e-07 ***
## Residuals 574 2758693 4806
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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In some statistical packages, the sum of the squares are labeled ”between groups” and ”within
groups”. Since lm and anova tables are used for a wide range of statistical models, the output from
R is different. The Between groups sum of the squares is labeled by the name of the factor group-
ings (Diet). The within sum of the squares is labeled Residuals. The aov function is a wrapper
which calls lm, but express the results these in the traditional language of the analysis of variance
rather than that of linear models.

For examples of different analysis of variance (using aov) at http://personality-project.
org/r/r.anova.html

aov(weight ˜ Diet, data = ChickWeight)

## Call:
## aov(formula = weight ˜ Diet, data = ChickWeight)
##
## Terms:
## Diet Residuals
## Sum of Squares 155863 2758693
## Deg. of Freedom 3 574
##
## Residual standard error: 69.33
## Estimated effects may be unbalanced

For a two-way analysis of variance, provide a second factor to lm

lmDiet <- lm(weight ˜ Diet + Time, data = ChickWeight)
summary(lmDiet)

##
## Call:
## lm(formula = weight ˜ Diet + Time, data = ChickWeight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -136.8 -17.1 -2.6 15.0 141.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.924 3.361 3.25 0.0012 **
## Diet2 16.166 4.086 3.96 8.6e-05 ***
## Diet3 36.499 4.086 8.93 < 2e-16 ***
## Diet4 30.233 4.107 7.36 6.4e-13 ***
## Time 8.750 0.222 39.45 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36 on 573 degrees of freedom
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## Multiple R-squared: 0.745,Adjusted R-squared: 0.744
## F-statistic: 419 on 4 and 573 DF, p-value: <2e-16
##

anova(lmDiet)

## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## Diet 3 155863 51954 40.1 <2e-16 ***
## Time 1 2016357 2016357 1556.4 <2e-16 ***
## Residuals 573 742336 1296
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.2.4 Discrete Data: Contingency Table

A contingency table (also referred to as cross tabulation or cross tab) is often used to record and an-
alyze the relation between two or more discrete/categorical variables. It displays the (multivariate)
frequency distribution of the variables in a matrix format. Test for association between such cate-
gorical variables are very common in research. Given two factors of at least 2 (usually unordered)
levels, you can use the package vcd to compute several association statistics for a contingency
table.

The simplest measure of association between two categorical variables is the φ coefficient
defined by

φ =
√

χ2

N

with N is the total number of observation and χ2 =
∑n

i=1
(Oi−Ei)

2

Ei

where

χ2 = Pearson’s cumulative test statistic

Oi = an observed frequency;

Ei = an expected (theoretical) frequency, asserted by the null hypothesis;

n = the number of cells in the table.

Another measure of association is the Cramer’s V statistic that is generalizable to rectangular
contingency table

V =
√

χ2

N(k−1)
,

k being the number of rows or the number of columns, whichever is less.
See http://en.wikipedia.org/wiki/Contingency_table for more details about
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measure of association in a contingency table.
In R, first create a contingency table and then use the function assocstats to computes the Pear-
son chi-Squared test, the Likelihood Ratio, chi-Squared test, the phi coefficient, the contingency
coefficient, and Cramer’s V statistics.

## load library
library(vcd)

## Loading required package: colorspace

## load data
attach(Arthritis)

## check the variables of interest
is.factor(Arthritis$Treatment)

## [1] TRUE

print(levels(Arthritis$Treatment))

## [1] "Placebo" "Treated"

is.factor(Arthritis$Improved)

## [1] TRUE

print(levels(Arthritis$Improved))

## [1] "None" "Some" "Marked"

## build the contingency table
tab <- table(Arthritis$Treatment, Arthritis$Improved)
print(tab)

##
## None Some Marked
## Placebo 29 7 7
## Treated 13 7 21

## compute statistics
res <- assocstats(tab)
print(res)
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## Xˆ2 df P(> Xˆ2)
## Likelihood Ratio 13.530 2 0.0011536
## Pearson 13.055 2 0.0014626
##
## Phi-Coefficient : 0.394
## Contingency Coeff.: 0.367
## Cramer's V : 0.394

detach(Arthritis)

The structure of the res object can be printed using the str function

str(res)

## List of 5
## $ table : 'table' int [1:2, 1:3] 29 13 7 7 7 21
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "Placebo" "Treated"
## .. ..$ : chr [1:3] "None" "Some" "Marked"
## $ chisq_tests: num [1:2, 1:3] 13.52981 13.05502 2 2 0.00115 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "Likelihood Ratio" "Pearson"
## .. ..$ : chr [1:3] "Xˆ2" "df" "P(> Xˆ2)"
## $ phi : num 0.394
## $ contingency: num 0.367
## $ cramer : num 0.394
## - attr(*, "class")= chr "assocstats"

You can easily access the various statistics from the res object

## Pearson chi squared test
print(res$chisq_tests[2, ])

## Xˆ2 df P(> Xˆ2)
## 13.055020 2.000000 0.001463

## Cramer's V statistic
print(res$cramer)

## [1] 0.3942

If you want to compute the agreement between two classifications or raters, you can estimate
the κ coefficient which can have the following typical values
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Kappa value magnitude of agreement
< 0 no

0 - 0.2 small
0.2 - 0.4 fair
0.4 - 0.6 moderate
0.6 - 0.8 substantial

0.8 - 1 almost perfect

## two random classification
set.seed(12345)
c1 <- sample(0:1, 100, replace = TRUE)
c2 <- sample(0:1, 100, replace = TRUE)
tab <- table(C1 = c1, C2 = c2)
Kappa(x = tab, weights = matrix(rep(1, 4), ncol = 2))

## value ASE
## Unweighted -0.04839 0.10073
## Weighted NaN 0.08598

In a practical situation, your Kappa coefficient needs to be over 0.6 to claim that your catego-
rization is valid. You may also want to report both the agreement (%)

agr <- sum(diag(tab))/sum(tab)
cat(sprintf("Agreement: %.2g%%\n", agr))

## Agreement: 0.48%

8.2.5 Common statistical Tests in R

Here is a quick (incomplete) list of useful R functions for basic statistical comparisons:

• Continuous Data

– t.test

– pairwise.t.test: pairwise comparisons
– var.test: comparison of two variances.
– lm(y∼x): linear regression analysis
– lm(y∼f1): one-way analysis of variance
– lm(y∼f1+f2): two-way analysis of variance (ANOVA), f1 and f2 are factors.
– lm(y∼f1+x): analysis of co-variance
– lm(y∼x1+x2+x3): multiple regression analysis
– bartlett.test: Bartlett’s test of the null that the variances in each of the groups (samples)

are the same

• Non-Parametric
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– wilcox.test: one- and two-sample Wilcoxon tests on vectors of data; the latter is also
known as Mann-Whitney test.

– kruskal.test: non-parametric one-way analysis of variance.
– friedman.test: non-parametric two-way analysis of variance.

• Correlation

cor, cor.test: correlation and Correlation tests. Cor.test methods include ”kendall” ”spear-
man” or ”pearson”.

• Discrete response data

– chisq.test: chi-squared contingency table tests, fisher.test exact test for small tables.
– binom.test: binomial test
– prop.test: prop.trend.test comparison of proportions.
– glm(y x1+x2+x3, binomial): logistic regression

* As a complete aside and to continue stories of Ireland’s mathematicians and statisticians, which I started with the story of

George Boole, the first professor of mathematics of University College Cork. The t statistic was introduced by William Sealy

Gosset to monitoring the quality of brewing in the Guinness brewery in Dublin, Ireland. Guinness’s has an innovative policy of

recruiting the best graduates from Oxford and Cambridge to apply biochemistry and statistics to Guinness’ industrial processes.

Gosset published the t test in Biometrika in 1908, but published using the pen name Student.
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8.3 Model formulae and model options

• Most modeling done in a standard way

• Data set is usually a single data frame object

• Model is fitted using model fitting function

• Form of the model specified by a formula

• Resulting fitted model object can be interrogated, analyzed and modified

Basic output of the model fitting process is minimal. Details obtained via extractor functions.
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8.3.1 Model formulae

We have already seen in several functions (boxplot, t.test, lm) that a simply function is defined by
y ∼ x. We will now discuss formulae in much more detail.

Define a template for statistical models

yi =

p∑
j=0

βjxij + εi, εi ∼ NID(0, σ2), i = 1, . . . , n

In the matrix form this model is

y = Xβ + ε

where y is the response vector,X is the model matrix or design matrix with columnsx0,x1, . . . ,xp.
NOTATION:
y, x, x0, x1, x2, ... - numeric variables
A, B, C, ... - factors

Examples of model formula with numeric variables:

y ˜ x
y ˜ 1 + x - simple regression (first - implicit intercept,

second - explicit intercept)
----------------------------------------------------------------------
y ˜ 0 + x
y ˜ x - 1
y ˜ -1 + x - regression through the origin
----------------------------------------------------------------------
y ˜ x1 + x2 + x3 - multiple regression
----------------------------------------------------------------------
y ˜ x + I(xˆ2) - quadratic regression
----------------------------------------------------------------------
log(y) ˜ x1 + x2 - multiple regression of transformed variable

Examples of model formula with factors and numeric variables:

y ˜ A - single analysis of variance model
y ˜ A + x - single analysis of covariance model with

covariate x
----------------------------------------------------------------------
y ˜ A*B
y ˜ A + B + A:B - two-factor model with interaction
----------------------------------------------------------------------
y ˜ (A + B + C)ˆ2 - all two-factor interactions
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----------------------------------------------------------------------
y ˜ A*B + Error(C) - two factor model with interaction and error

strata determined by C

General form:

response ˜ op_1 term_1 + op_2 term_2 + ...

where

response - a vector or expression evaluating to a vector defining the
response variable

op_i - an operator, either '+' (inclusion of a term)
or '-' (exclusion of a term) in the model

term_i - either a vector or matrix expression,
or 1, a factor,
or a formula expression consisting of factors, vectors or
matrices connected by formula operators.

8.3.2 Example of linear regression

Will use data ’cats’ from the MASS library.

library(MASS)
help("cats")
str(cats)

## 'data.frame': 144 obs. of 3 variables:
## $ Sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
## $ Bwt: num 2 2 2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 ...
## $ Hwt: num 7 7.4 9.5 7.2 7.3 7.6 8.1 8.2 8.3 8.5 ...

cats.lmB <- lm(Hwt ˜ Bwt, data = cats)
cats.lmS <- lm(Hwt ˜ Sex, data = cats)
cats.lmBS <- lm(Hwt ˜ Bwt + Sex, data = cats)
cats.lmBxS <- lm(Hwt ˜ Bwt * Sex, data = cats)
cats.lmB2 <- lm(Hwt ˜ Bwt + I(Bwtˆ2), data = cats)
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8.3.3 Contrasts, model.matrix

We need to understand how model formulae specify the columns of the model matrix.

1. Continuous variables (simplest): each variable provides a column of the model matrix (and
the intercept will provide a column of ones if included in the model).

2. k-level factor A
The answer differs for unordered and ordered factors.

• Unordered factors
k− 1 columns are generated for the indicators of the second, third, . . . , up to kth levels
of the factor. (Implicit parameterization is to contrast the response at each level with
that at the first.)

• Ordered factors
k − 1 columns are the orthogonal polynomials on 1, . . . , k, omitting the constant term.

If the intercept is omitted in a model that contains a factor term, the first such term is encoded
into k columns giving the indicators for all the levels.

R default setting is:

options(contrasts = c("contr.treatment", "contr.poly"))

Contrasts can be defined using the contrasts or C function Example

contr.treatment(n = 3, base = 2)

## 1 3
## 1 1 0
## 2 0 0
## 3 0 1

contr.sum(n = 3)

## [,1] [,2]
## 1 1 0
## 2 0 1
## 3 -1 -1
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8.4 Exercise 9

# What is the difference in output?
lm(Hwt ˜ Sex, data = cats)

##
## Call:
## lm(formula = Hwt ˜ Sex, data = cats)
##
## Coefficients:
## (Intercept) SexM
## 9.20 2.12
##

lm(Hwt ˜ Sex - 1, data = cats)

##
## Call:
## lm(formula = Hwt ˜ Sex - 1, data = cats)
##
## Coefficients:
## SexF SexM
## 9.2 11.3
##

model.matrix is useful to view the terms in the fitted model.
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8.5 Output and extraction from fitted models

As mentioned earlier, the printed output of the model fit is minimal. However, the value of a fitted
model object is stored in an object. Information about the fitted model can be displayed, extracted
and plotted.

Extractor functions:

coef(obj) - regression coefficients
resid(obj) - residuals
fitted(obj) - fitted values
summary(obj) - analysis summary
predict(obj,newdata = ndat) - predict for new data
deviance(obj) - residual sum of squares
print(obj) - Print concise summary
plot(obj) - produce diagnostic plots
formula(obj) - extract the model formula
anova(obj1, obj2) - compare 2 models (one is a submodel with the outer model)
step(obj) - add, drop terms
update(obj, formula) - update a model with a new formula

Let’s go back to the cats example. Now, we can extract more information about the fits.

attach(cats)
cats.lmBS <- lm(Hwt ˜ Bwt + Sex, data = cats)
coef(cats.lmBS)

## (Intercept) Bwt SexM
## -0.4150 4.0758 -0.0821

fit.catsBS <- fitted(cats.lmBS)

cats.lmBxS <- lm(Hwt ˜ Bwt * Sex, data = cats)
fit.catsBxS <- fitted(cats.lmBxS)

Plot these 2 models.

plot(Bwt, Hwt)
lines(Bwt, fit.catsBS, col = "green", lwd = 2) # OR
# abline(cats.lmBS, col='green', lwd=2)
lines(Bwt[Sex == "F"], fit.catsBxS[Sex == "F"], col = "red")
lines(Bwt[Sex == "M"], fit.catsBxS[Sex == "M"], col = "blue")
legend(x = 2, y = 20, legend = c("LMBS", "lmBxS.female", "lmBxS.male"),

col = c("green", "red", "blue"), lwd = c(2, 1, 1))
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2.0 2.5 3.0 3.5

6
8

10
12

14
16

18
20

Bwt
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t
LMBS
lmBxS.female
lmBxS.male

Prediction of Hwt values

predict(cats.lmBxS, data.frame(Bwt = seq(2, 5, 1), Sex = "M"))

## 1 2 3 4
## 7.441 11.754 16.067 20.379

detach(cats)

Some more useful, but non-standard, ways of extracting information from a model.

df.residual(obj) - residual degrees of freedom
names(obj) - gives names of the components in obj
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names(summary(obj)) - gives names of the components in summary(obj)

How to get the residual variance of the fit? There are at least 2 ways. The first is the direct
calculation

# direct calculation
var.catsB <- deviance(cats.lmB)/df.residual(cats.lmB)

var.catsB <- summary(cats.lmB)$sigmaˆ2
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8.6 Exercise 10 :Multivariate linear regression

• Read the data contained in the file lungs.csv from the course website into R. Fit a multi-
variate regression model (function lm) of pemax using all variables. Call the result lungFit.

• Which terms appear to be significant (summary)?

• What is the residual error of this model?

• Which are the most and least significant variables in this model?
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8.6.1 Residual plots, diagnostics

Important part of modeling - checking the model assumptions. Some easy to check and interpret
model diagnostics

1. Fit to the data (predictions) vs. raw data (observations)

2. Histogram of the residuals

3. Scatterplot of the residuals vs. fitted values

4. QQ-plot of the residuals

attach(cats)
plot(Bwt, Hwt, main = "Model fit")
abline(cats.lmB, col = "green", lwd = 2)

Fit the model

hist(resid(cats.lmB), main = "Residual histogram")

Residual histogram

plot(fitted(cats.lmB), resid(cats.lmB), main = "Residuals vs. fitted values")
lines(lowess(fitted(cats.lmB), resid(cats.lmB)), col = "red")
abline(h = 0)

Residuals vs. fitted values
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qqnorm(resid(cats.lmB))
qqline(resid(cats.lmB))
detach()

Figure 8.1: Plots of the fitted Model,Residuals vs. fitted values and QQ-PLots of the residuals

QQ-plot of residuals
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Default plots available in plot of class lm

par(mfrow = c(2, 2))
plot(cats.lmB, which = 1:4, id.n = 5)
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8.6.2 ANOVA and updating models

Anova tables for a sequence of fitted models

anova(obj_1, obj_2) - compare two models where obj_1 and obj_2 are two regression models
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The sums of squares shown are the decrease in the residual sums of squares resulting from an
inclusion of that term in the model at that place in the sequence. Only for orthogonal experiments
will the order of inclusion be inconsequential.

anova(cats.lmB, cats.lmBS)

## Analysis of Variance Table
##
## Model 1: Hwt ˜ Bwt
## Model 2: Hwt ˜ Bwt + Sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 142 300
## 2 141 299 1 0.155 0.07 0.79

anova(cats.lmB, cats.lmBxS)

## Analysis of Variance Table
##
## Model 1: Hwt ˜ Bwt
## Model 2: Hwt ˜ Bwt * Sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 142 300
## 2 140 291 2 8.49 2.04 0.13

anova(cats.lmB, cats.lmBS, cats.lmBxS)

## Analysis of Variance Table
##
## Model 1: Hwt ˜ Bwt
## Model 2: Hwt ˜ Bwt + Sex
## Model 3: Hwt ˜ Bwt * Sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 142 300
## 2 141 299 1 0.15 0.07 0.785
## 3 140 291 1 8.33 4.01 0.047 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The update() function allows a model to be fitted that differs from one previously fitted usually
by just a few additional or removed terms.
Syntax:

new.model <- update(old.model, new.formula)

Special name in the new formula - a period ’.’ - can be used to stand for “corresponding part of the
old model formula”.

Example:
Data set mtcars, fuel consumption and 10 aspects of automobile design and performance for

32 automobiles.
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help("mtcars")
cars.lm <- lm(mpg ˜ hp + wt, data = mtcars)
cars.lm2 <- update(cars.lm, . ˜ . + disp)
# cars.lms <- update(cars.lm2, sqrt(.) ˜ .)

what does the following do?

# anova(cars.lm, cars.lm2, cars.lms)
anova(cars.lm, cars.lm2)

## Analysis of Variance Table
##
## Model 1: mpg ˜ hp + wt
## Model 2: mpg ˜ hp + wt + disp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 29 195
## 2 28 195 1 0.0571 0.01 0.93

8.6.3 Model selection

There are functions in R automating the choice of terms in the statistical models. Adding, drop-
ping and performing stepwise selection in a sequence of models.

• Dropping terms: drop1() or dropterm() from the MASS library

• Adding terms: add1() or addterm() from the MASS library

• Stepwise selection: step() or stepAIC() from the MASS library

More details:

dropterm Fits all models that differ from the current model by dropping a single term, maintaining
marginality.

dropterm(model.big, test='F') # for linear models
dropterm(model.big, test='Chisq') # for generalized linear models

addterm Fits all models that differ from the current model by adding a single term from those
supplied, maintaining marginality

addterm(model.small, scope=model.big, test='F') # for linear models

stepAIC Performs stepwise model selection by exact AIC

stepAIC(model.small,
scope=list(upper=model.big, lower= ˜1),
test='F') # for linear models
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Example

Data set mtcars

# Fit regression model with all other covariates as predictors
cars.all <- lm(mpg ˜ ., data=mtcars)
# Drop terms
dropterm(cars.all, test = "F")

# Probably not appropriate analysis. Try
cars.some <- lm(mpg ˜ factor(cyl) + hp + wt + disp + qsec + factor(gear),

data=mtcars)
dropterm(cars.some, test = "F")

# Start with one variable
cars.sm <- update(cars.some, .˜ wt)
addterm(cars.sm, cars.some, test='F')

# Stepwise selection
cars.step <- stepAIC(cars.some, scope=list(lower = ˜ wt))

8.7 Cross-validation

Another approach, developed by the machine Learning community, is cross-validation. The idea
is to sequentially divide the dataset in training and test sets to fit and assess the performance of the
model, respectively. This approach enables to use all the observations both for training and testing
the prediction model.

Here is an example of a 10-fold cross-validation on the mtcars dataset where we compare the
model with one variable (wt) and all the variables to predict mpg. Once the root mean squared
error (RMSE) is computed for each fold, a paired Wilcoxon Rank Sum test is used to compare the
performance of the small and big models.

nfold <- 10
## nr is the number of observations
nr <- nrow(mtcars)
## nfold is the number of folds in the cross-validation
if(nfold > 1) k <- floor(nr/nfold) else {
k <- 1
nfold <- nr
}
smpl <- sample(nr)
mse.big <- mse.small <- NULL

for (i in 1:nfold) {
if (i == nfold) s.ix <- smpl[c(((i - 1) * k + 1):nr)] else s.ix <- smpl[c(((i - 1) * k + 1):(i * k))]

## fit the model
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mm.big <- lm(mpg ˜ ., data=mtcars[-s.ix, , drop=FALSE])
mm.small <- lm(mpg ˜ wt, data=mtcars[-s.ix, , drop=FALSE])
## assess the performance of the model
pp.big <- predict(object=mm.big, newdata=mtcars[s.ix, !is.element(colnames(mtcars), "mpg")])
pp.small <- predict(object=mm.small, newdata=mtcars[s.ix, !is.element(colnames(mtcars), "mpg")])
## compute mean squared error (MSE)
mse.big <- c(mse.big, sqrt(mean((mtcars[s.ix, "mpg"] - pp.big)ˆ2)))
mse.small <- c(mse.small, sqrt(mean((mtcars[s.ix, "mpg"] - pp.small)ˆ2)))
}
names(mse.big) <- names(mse.small) <- paste("fold", 1:nfold, sep=".")

## compare the performance of the big and small models using a Wilcoxon Rank Sum test
wilcox.test(mse.big, mse.small, paired=TRUE, alternative="less")

##
## Wilcoxon signed rank test
##
## data: mse.big and mse.small
## V = 35, p-value = 0.7842
## alternative hypothesis: true location shift is less than 0
##

As can be seen, there is not enough evidence in the dataset to claim that the big prediction
model outperforms the small one (p-value > 0.05). You can easily change the number of folds
in the cross-validation by setting the variable nfold to another value, nfold = 1 for leave-one-out
cross-validation.
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8.8 Statistical models

Will talk today about 3 classes of statistical models: linear regression, generalized linear models
(e.g. logistic and Poisson regression), and survival models.

8.8.1 Linear Regression: Weighted Models, Missing Values

We have talked and went through examples of linear regression using the function lm(). Will
expand here on the options for the function lm()

lm(formula, data, subset, weights, na.action, ...)

subset - (optional) a subset of observations to be used in the fitting process

weights - (optional) weights to fit the model using weighted list squares method

na.action - what happens to data containing missing values ’NA’s;
na.omit - is the default; another option na.fail

attach(ChickWeight)
time.wgt <- tapply(weight, Time, var)
time.wgt.rep <- as.numeric(time.wgt[match(Time, as.numeric(names(time.wgt)))])
detach(2)
Chick.anl <- data.frame(ChickWeight, time.wgt.rep = time.wgt.rep)
chick.lm.wgt <- lm(weight ˜ Time, data = Chick.anl, weight = 1/time.wgt.rep)
chick.lm.T0 <- lm(weight ˜ Time, data = Chick.anl, subset = (Time ==

0))
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8.8.2 Generalized linear modeling

• One generalization of multiple linear regression.

• Response, y, predictor variables x1, x2, . . . , xp

• The distribution of Y depends on the x’s through a single linear function, the ’linear predic-
tor’

ν = β1x1 + β2x2 + . . .+ βpxp (8.1)

with xi having no influence on y if and only if βi = 0

• There may be an unknown ’scale’ (or ’variance’) parameter φ to estimate as well

• The mean, µ, is a smooth invertible function of the linear predictor

µ = m(ν), ν = m−1(µ) = l(µ) (8.2)

and this inverse function, l(), is called the link function

• The deviance is a generalization of the residual sum of squares.

• The protocols are very similar to linear regression and the inferential logic is virtually iden-
tical.

The class of generalized linear models handled by facilities supplied in R includes Gaussian, bino-
mial, Poisson, inverse Gaussian and gamma response distributions.

Families of distributions and links

Distribution Link
------------- -------------------------------
binomial logit, probit, log, cloglog
gaussian identity, log, inverse
Gamma identity, inverse, log
inverse.gaussian 1/muˆ2, identity, inverse, log
poisson identity, log, sqrt

The R function to fit a generalized linear model is glm() which uses the form

fitted.model <- glm(formula, family=family.generator, data=data.frame)

The only difference from lm() is the family.generator, which is the instrument by which the
family is described. It is the name of a function that generates a list of functions and expressions
that together define and control the model and estimation process.

We will concentrate on the binomial family with the logit link or as you probably know it
’logistic regression’,.
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Logistic regression

To fit a binomial model using glm() there are three possibilities for the response:

1. If the response is a vector it is assumed to hold binary data, and so must be a 0/1 vector.

2. If the response is a two-column matrix it is assumed that the first column holds the number
of successes for the trial and the second holds the number of failures.

3. If the response is a factor, its first level is taken as failure (0) and all other levels as ’success’
(1).

Syntax:

glm(y ˜ x, family=binomial(link=logit), data = data.frame)

Link is optional, since the default link is logit. Necessary, if another link is desired, e.g. probit.
Example of logistic regression using data set esophagus

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France containing records
for 88 age/alcohol/tobacco combinations with the 3 covariates grouped into 6, 4 and 4 groups
respectively.

summary(esoph)

## agegp alcgp tobgp ncases
## 25-34:15 0-39g/day:23 0-9g/day:24 Min. : 0.00
## 35-44:15 40-79 :23 10-19 :24 1st Qu.: 0.00
## 45-54:16 80-119 :21 20-29 :20 Median : 1.00
## 55-64:16 120+ :21 30+ :20 Mean : 2.27
## 65-74:15 3rd Qu.: 4.00
## 75+ :11 Max. :17.00
## ncontrols
## Min. : 1.0
## 1st Qu.: 3.0
## Median : 6.0
## Mean :11.1
## 3rd Qu.:14.0
## Max. :60.0

effects of alcohol and tobacco, age-adjusted

eso.age <- glm(cbind(ncases, ncontrols) ˜ agegp, data = esoph,
family = binomial())

eso.base <- glm(cbind(ncases, ncontrols) ˜ agegp + tobgp +
alcgp, data = esoph, family = binomial())
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eso.base <- update(eso.age, . ˜ . + tobgp + alcgp)

eso.TA <- glm(cbind(ncases, ncontrols) ˜ agegp + tobgp * alcgp,
data = esoph, family = binomial())

eso.2way <- glm(cbind(ncases, ncontrols) ˜ (agegp + tobgp +
alcgp)ˆ2, data = esoph, family = binomial())

Stepwise model selection

eso.base <- glm(cbind(ncases, ncontrols) ˜ agegp + tobgp +
alcgp, data = esoph, family = binomial())

eso.stp <- stepAIC(eso.age, scope = list(upper = ˜agegp +
tobgp + alcgp, lower = ˜1), test = "Chisq")

## Start: AIC=298.6
## cbind(ncases, ncontrols) ˜ agegp
##
## Df Deviance AIC LRT Pr(Chi)
## + alcgp 3 64.6 230 74.5 4.5e-16 ***
## + tobgp 3 120.0 286 19.1 0.00026 ***
## <none> 139.1 299
## - agegp 5 227.2 377 88.1 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=230.1
## cbind(ncases, ncontrols) ˜ agegp + alcgp
##
## Df Deviance AIC LRT Pr(Chi)
## + tobgp 3 54.0 226 10.6 0.014 *
## <none> 64.6 230
## - agegp 5 138.8 294 74.2 1.4e-14 ***
## - alcgp 3 139.1 299 74.5 4.5e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=225.4
## cbind(ncases, ncontrols) ˜ agegp + alcgp + tobgp
##
## Df Deviance AIC LRT Pr(Chi)
## <none> 54.0 226
## - tobgp 3 64.6 230 10.6 0.014 *
## - alcgp 3 120.0 286 66.1 3.0e-14 ***
## - agegp 5 131.5 293 77.5 2.8e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Prediction and residuals Plot the fitted values for ’age’ effect

attach(esoph)
eso.pred.age <- predict.glm(eso.base, data.frame(agegp = agegp,

tobgp = rep("30+", 88), alcgp = rep("40-79", 88)), type = "response")
plot(eso.pred.age ˜ agegp, ylab = "Predicted Age", xlab = "Age group (True age)")
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detach(esoph)

4 types of residuals can be requested for the glm() models: deviance, working, Pearson, re-
sponse

opar <- par(mfrow=c(2,2))
for (i in c('deviance', 'working', 'pearson', 'response'))
plot(resid(eso.base, type=i), ylab=i, pch=19, col="red")
mtext('Different types of residuals',line=-2, outer=T, cex=1.2)
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Different types of residuals

par(opar)

8.8.3 Other packages

• Tibshirani and Hastie’s provide elastic net, lasso, ridge regression, adaptive lasso and the
adaptive elastic net regularized generalized linear models available in the package glmnet

• Other packages for machine learning are listed on http://cran.r-project.org/
web/views/MachineLearning.html
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8.9 Survival modeling

Survival Analysis is a class of statistical methods for studying the occurrence and timing of events.
These methods are most often applied to the study of deaths but can also handle different kinds of
events, including the onset of disease and equipment failure for instance. For instance a disease
consists of a transition from an healthy state to a diseased state. Moreover, the timing of the event
is also considered for analysis.

Survival data have a common feature, namely censoring, that is difficult to handle with con-
ventional statistical methods. Consider the following example, which illustrates the problem of
censoring. A sample of breast cancer patients were followed during 10 years after diagnosis. The
event of interest was the appearance of a distant metastasis (a tumor initiated from the primary
breast tumor cells and that is located in another organ). The aim was to determine how the occur-
rence and timing of distant metastasis appearance depended on several variables.

8.9.1 Censored Data

An observation on a random variable t is right-censored if all you know about t is that it is greater
than some value c. In survival analysis, t is typically the time of occurrence for some event, and
cases are right-censored because observation is terminated before the event occurs.

Random censoring occurs when observations are terminated for reasons that are not under the
control of the investigator. This situation can be illustrated in our example. Patients who are still
free of distant metastasis after 10 years are censored by a mechanism identical to that applied to the
singly right-censored data. But some patients may move away, and it may be impossible to contact
them. Some patients may die from another cause. Still other patients may refuse to participate
after, say, 5 years. These kinds of censoring are depicted in Figure 8.2, where the symbol ”+” for
the patients A and C indicates that observation is censored at that point in time.

Figure 8.2: Randomly censored data.

The vast majority of the he functions we need to do survival analysis are in the package sur-
vival. Check if the package survival is already loaded into your work space, if it isn’t load the
library survival

search()
library(survival)

## Loading required package: splines

We will work with the data set ’leukemia’ containing times of death or censoring in patients
with Acute Myelogenous Leukemia. The survival data are usually stored in a Surv object that is a
one-column matrix containing the survival times and events/censoring.

data(leukemia)
head(leukemia)
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## time status x
## 1 9 1 Maintained
## 2 13 1 Maintained
## 3 13 0 Maintained
## 4 18 1 Maintained
## 5 23 1 Maintained
## 6 28 0 Maintained

`?`(Surv)
mysurv <- Surv(leukemia$time, leukemia$status)
head(mysurv)

## [1] 9 13 13+ 18 23 28+

Several methods for survival analysis are implemented in R, mainly in the survival package:

Surv - creates a survival object used as a response variable in a model formula,
e.g. Surv(time, status)

survfit - computes an estimate of a survival curve for censored data using the Kaplan-Meier
method, e.g. survfit(Surv(time, status) group)

survdiff - Tests if there is a difference between two or more survival curves,
e.g. survdiff(Surv(time, status) group)

survreg - regression for a parametric survival model with special case, the accelerated failure
models that use a log transformation of the response.

coxph - fits a Cox proportional hazards regression model

8.9.2 Kaplan-Meier curve estimation

We can easily draw the survival curve of patients representing the proportion of patients who
survived over time. We provide the function survfit with the following set of arguments

survfit(formula, data, weights, subset, na.action,
newdata, individual=F, conf.int=.95, se.fit=T,
type=c("kaplan-meier","fleming-harrington", "fh2"),
error=c("greenwood","tsiatis"),
conf.type=c("log","log-log","plain","none"),
conf.lower=c("usual", "peto", "modified"))

# To see help on this function or a description of these arguments
?survfit
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leuk.km <- survfit(Surv(time, status) ˜ x, data = leukemia)
plot(leuk.km, lty = 1, col = c("darkblue", "darkred"))
legend(100, 1, legend = c("Maintain", "Non-main"), lty = 1:2,

col = c("darkblue", "darkred"))
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Compute confidence intervals and plot them

leuk.km2 <- survfit(Surv(time, status) ˜ x, data = leukemia,
conf.type = "log-log")

summary(leuk.km2)

## Call: survfit(formula = Surv(time, status) ˜ x, data = leukemia, conf.type = "log-log")
##
## x=Maintained
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 9 11 1 0.909 0.0867 0.5081 0.987
## 13 10 1 0.818 0.1163 0.4474 0.951
## 18 8 1 0.716 0.1397 0.3502 0.899
## 23 7 1 0.614 0.1526 0.2658 0.835
## 31 5 1 0.491 0.1642 0.1673 0.753
## 34 4 1 0.368 0.1627 0.0928 0.657
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## 48 2 1 0.184 0.1535 0.0117 0.525
##
## x=Nonmaintained
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 5 12 2 0.8333 0.1076 0.48171 0.956
## 8 10 2 0.6667 0.1361 0.33702 0.860
## 12 8 1 0.5833 0.1423 0.27014 0.801
## 23 6 1 0.4861 0.1481 0.19188 0.730
## 27 5 1 0.3889 0.1470 0.12627 0.650
## 30 4 1 0.2917 0.1387 0.07240 0.561
## 33 3 1 0.1944 0.1219 0.03120 0.461
## 43 2 1 0.0972 0.0919 0.00575 0.349
## 45 1 1 0.0000 NaN NA NA
##

plot(leuk.km2, mark.time = FALSE, conf.int = TRUE, lty = 1,
col = c("darkblue", "darkred"))

legend(100, 1, legend = c("Maintain", "Non-main"), lty = 1:2,
col = c("darkblue", "darkred"))
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Test for difference (log-rank test)

survdiff(Surv(time, status) ˜ x, data = leukemia)

## Call:
## survdiff(formula = Surv(time, status) ˜ x, data = leukemia)
##
## N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V
## x=Maintained 11 7 10.69 1.27 3.4
## x=Nonmaintained 12 11 7.31 1.86 3.4
##
## Chisq= 3.4 on 1 degrees of freedom, p= 0.0653
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8.9.3 Cox proportional hazards model

The (semi-parametric) Cox regression model refers to the method first proposed in 1972 by the
British statistician Cox in his seminal paper “Regression Models and Life Tables”. It is difficult to
exaggerate the impact of this paper. In the 1992 Science Citation Index, it was cited over 800 times,
making it the most highly cited journal article in the entire literature of statistics. In fact, Garfield
reported that its cumulative citation count placed it among the top 100 papers in all branches of
science.

This enormous popularity can be explained by the fact that, unlike the parametric methods,
Cox’s method does not require the selection of some particular probability distribution to represent
survival times. For this reason, the method is called semi-parametric. Cox made two significant
innovations. First, he proposed a model that is often referred to as the proportional hazards model.
Second, he proposed a new estimation method that was later named maximum partial likelihood.
The term Cox regression refers to the combination of the model and the estimation method

Here is an example of Cox regression estimating the benefit of maintaining chemotherapy of
with respect to the survival of the patients.

leuk.ph <- coxph(Surv(time, status) ˜ x, data = leukemia)
summary(leuk.ph)

## Call:
## coxph(formula = Surv(time, status) ˜ x, data = leukemia)
##
## n= 23, number of events= 18
##
## coef exp(coef) se(coef) z Pr(>|z|)
## xNonmaintained 0.916 2.498 0.512 1.79 0.074 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## xNonmaintained 2.5 0.4 0.916 6.81
##
## Concordance= 0.619 (se = 0.073 )
## Rsquare= 0.137 (max possible= 0.976 )
## Likelihood ratio test= 3.38 on 1 df, p=0.0658
## Wald test = 3.2 on 1 df, p=0.0737
## Score (logrank) test = 3.42 on 1 df, p=0.0645
##

# plot(leuk.km2, mark.time=F, lty=1:2) lines(survfit(leuk.ph),
# lty=1:2, lwd=2)

It is not trivial to estimate the relevance of a variable with survival. If this variable is categori-
cal, you can draw the survival curves and statistically compare them. If the variable under interest
is continuous you can arbitrarily discretize it (not advisable) or use many existing performance cri-
teria published so far for survival analysis: hazard ration (see coxph), D.index, concordance.index,
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time-dependent ROC curve, Brier score,. . . The survcomp package contains functions to estimate
these criteria.
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8.10 Exercise 11: Survival Analysis

• Use the colon dataset from the library survival

• draw the Kaplan-Meier survival curves for the three group of patients encode by ’rx’.

• Use different colors for the curves and plot the lines twice as thick as the default size (param-
eter lwd).

• Which color encodes which group? Add a legend to the plot to make this clear.

• Generate a PDF output of the plot and put it in the website dropbox along with your code.

• Test if the different patient group have significantly different outcome?
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Chapter 9

Data summaries (including SAS style)

We will look at some of the summary methods in R.
Define datasets

data(mtcars)
df <- mtcars
dim(df)

## [1] 32 11

View data

View(df)
head(df)

## mpg cyl disp hp drat wt qsec vs am gear
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
## carb
## Mazda RX4 4
## Mazda RX4 Wag 4
## Datsun 710 1
## Hornet 4 Drive 1
## Hornet Sportabout 2
## Valiant 1

tail(df)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
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## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

str(df)

## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...

Basic Summary

summary(df)

## mpg cyl disp hp
## Min. :10.4 Min. :4.00 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.4 1st Qu.:4.00 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.2 Median :6.00 Median :196.3 Median :123.0
## Mean :20.1 Mean :6.19 Mean :230.7 Mean :146.7
## 3rd Qu.:22.8 3rd Qu.:8.00 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.9 Max. :8.00 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.76 Min. :1.51 Min. :14.5 Min. :0.000
## 1st Qu.:3.08 1st Qu.:2.58 1st Qu.:16.9 1st Qu.:0.000
## Median :3.69 Median :3.33 Median :17.7 Median :0.000
## Mean :3.60 Mean :3.22 Mean :17.8 Mean :0.438
## 3rd Qu.:3.92 3rd Qu.:3.61 3rd Qu.:18.9 3rd Qu.:1.000
## Max. :4.93 Max. :5.42 Max. :22.9 Max. :1.000
## am gear carb
## Min. :0.000 Min. :3.00 Min. :1.00
## 1st Qu.:0.000 1st Qu.:3.00 1st Qu.:2.00
## Median :0.000 Median :4.00 Median :2.00
## Mean :0.406 Mean :3.69 Mean :2.81
## 3rd Qu.:1.000 3rd Qu.:4.00 3rd Qu.:4.00
## Max. :1.000 Max. :5.00 Max. :8.00

Using the describe function
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library(Hmisc)
describe(df)

## df
##
## 11 Variables 32 Observations
## --------------------------------------------------------------------
## mpg
## n missing unique Mean .05 .10 .25 .50
## 32 0 25 20.09 12.00 14.34 15.43 19.20
## .75 .90 .95
## 22.80 30.09 31.30
##
## lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
## --------------------------------------------------------------------
## cyl
## n missing unique Mean
## 32 0 3 6.188
##
## 4 (11, 34%), 6 (7, 22%), 8 (14, 44%)
## --------------------------------------------------------------------
## disp
## n missing unique Mean .05 .10 .25 .50
## 32 0 27 230.7 77.35 80.61 120.83 196.30
## .75 .90 .95
## 326.00 396.00 449.00
##
## lowest : 71.1 75.7 78.7 79.0 95.1
## highest: 360.0 400.0 440.0 460.0 472.0
## --------------------------------------------------------------------
## hp
## n missing unique Mean .05 .10 .25 .50
## 32 0 22 146.7 63.65 66.00 96.50 123.00
## .75 .90 .95
## 180.00 243.50 253.55
##
## lowest : 52 62 65 66 91, highest: 215 230 245 264 335
## --------------------------------------------------------------------
## drat
## n missing unique Mean .05 .10 .25 .50
## 32 0 22 3.597 2.853 3.007 3.080 3.695
## .75 .90 .95
## 3.920 4.209 4.314
##
## lowest : 2.76 2.93 3.00 3.07 3.08, highest: 4.08 4.11 4.22 4.43 4.93
## --------------------------------------------------------------------
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## wt
## n missing unique Mean .05 .10 .25 .50
## 32 0 29 3.217 1.736 1.956 2.581 3.325
## .75 .90 .95
## 3.610 4.048 5.293
##
## lowest : 1.513 1.615 1.835 1.935 2.140
## highest: 3.845 4.070 5.250 5.345 5.424
## --------------------------------------------------------------------
## qsec
## n missing unique Mean .05 .10 .25 .50
## 32 0 30 17.85 15.05 15.53 16.89 17.71
## .75 .90 .95
## 18.90 19.99 20.10
##
## lowest : 14.50 14.60 15.41 15.50 15.84
## highest: 19.90 20.00 20.01 20.22 22.90
## --------------------------------------------------------------------
## vs
## n missing unique Sum Mean
## 32 0 2 14 0.4375
## --------------------------------------------------------------------
## am
## n missing unique Sum Mean
## 32 0 2 13 0.4062
## --------------------------------------------------------------------
## gear
## n missing unique Mean
## 32 0 3 3.688
##
## 3 (15, 47%), 4 (12, 38%), 5 (5, 16%)
## --------------------------------------------------------------------
## carb
## n missing unique Mean
## 32 0 6 2.812
##
## 1 2 3 4 6 8
## Frequency 7 10 3 10 1 1
## % 22 31 9 31 3 3
## --------------------------------------------------------------------

9.1 1,2 and 3-way Cross Tabulations

Basic Tables
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table(df$cyl)

##
## 4 6 8
## 11 7 14

table(df$cyl, df$gear)

##
## 3 4 5
## 4 1 8 2
## 6 2 4 1
## 8 12 0 2

# Number of cyclinders, numbers of gear, transmission type
table(df$cyl, df$gear, df$am)

## , , = 0
##
##
## 3 4 5
## 4 1 2 0
## 6 2 2 0
## 8 12 0 0
##
## , , = 1
##
##
## 3 4 5
## 4 0 6 2
## 6 0 2 1
## 8 0 0 2
##

Crosstabulation using formula format

xtabs(cyl ˜ gear, df)

## gear
## 3 4 5
## 112 56 30

xtabs(cyl ˜ gear + am + vs, df)

## , , vs = 0
##
## am
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## gear 0 1
## 3 96 0
## 4 0 12
## 5 0 26
##
## , , vs = 1
##
## am
## gear 0 1
## 3 16 0
## 4 20 24
## 5 0 4
##

9.1.1 Contingency Tables

Standard R tables

`?`(ftable)
ftable(df$cyl, df$vs, df$am, df$gear, row.vars = c(2, 4),

dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

## Cylinders 4 6 8
## Transmission 0 1 0 1 0 1
## V/S Gears
## 0 3 0 0 0 0 12 0
## 4 0 0 0 2 0 0
## 5 0 1 0 1 0 2
## 1 3 1 0 2 0 0 0
## 4 2 6 2 0 0 0
## 5 0 1 0 0 0 0

ftable(df$cyl, df$vs, df$am, df$gear, row.vars = c(2, 3),
dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

## Cylinders 4 6 8
## Gears 3 4 5 3 4 5 3 4 5
## V/S Transmission
## 0 0 0 0 0 0 0 0 12 0 0
## 1 0 0 1 0 2 1 0 0 2
## 1 0 1 2 0 2 2 0 0 0 0
## 1 0 6 1 0 0 0 0 0 0

Two way cross tabulation in SAS format
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library(gmodels)
CrossTable(df$cyl, df$gear, format = "SAS")

##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 32
##
##
## | df$gear
## df$cyl | 3 | 4 | 5 | Row Total |
## -------------|-----------|-----------|-----------|-----------|
## 4 | 1 | 8 | 2 | 11 |
## | 3.350 | 3.640 | 0.046 | |
## | 0.091 | 0.727 | 0.182 | 0.344 |
## | 0.067 | 0.667 | 0.400 | |
## | 0.031 | 0.250 | 0.062 | |
## -------------|-----------|-----------|-----------|-----------|
## 6 | 2 | 4 | 1 | 7 |
## | 0.500 | 0.720 | 0.008 | |
## | 0.286 | 0.571 | 0.143 | 0.219 |
## | 0.133 | 0.333 | 0.200 | |
## | 0.062 | 0.125 | 0.031 | |
## -------------|-----------|-----------|-----------|-----------|
## 8 | 12 | 0 | 2 | 14 |
## | 4.505 | 5.250 | 0.016 | |
## | 0.857 | 0.000 | 0.143 | 0.438 |
## | 0.800 | 0.000 | 0.400 | |
## | 0.375 | 0.000 | 0.062 | |
## -------------|-----------|-----------|-----------|-----------|
## Column Total | 15 | 12 | 5 | 32 |
## | 0.469 | 0.375 | 0.156 | |
## -------------|-----------|-----------|-----------|-----------|
##
##

CrossTable(df$cyl, df$gear, expected = TRUE, format = "SAS")
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## Warning: Chi-squared approximation may be incorrect

##
##
## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 32
##
##
## | df$gear
## df$cyl | 3 | 4 | 5 | Row Total |
## -------------|-----------|-----------|-----------|-----------|
## 4 | 1 | 8 | 2 | 11 |
## | 5.156 | 4.125 | 1.719 | |
## | 3.350 | 3.640 | 0.046 | |
## | 0.091 | 0.727 | 0.182 | 0.344 |
## | 0.067 | 0.667 | 0.400 | |
## | 0.031 | 0.250 | 0.062 | |
## -------------|-----------|-----------|-----------|-----------|
## 6 | 2 | 4 | 1 | 7 |
## | 3.281 | 2.625 | 1.094 | |
## | 0.500 | 0.720 | 0.008 | |
## | 0.286 | 0.571 | 0.143 | 0.219 |
## | 0.133 | 0.333 | 0.200 | |
## | 0.062 | 0.125 | 0.031 | |
## -------------|-----------|-----------|-----------|-----------|
## 8 | 12 | 0 | 2 | 14 |
## | 6.562 | 5.250 | 2.188 | |
## | 4.505 | 5.250 | 0.016 | |
## | 0.857 | 0.000 | 0.143 | 0.438 |
## | 0.800 | 0.000 | 0.400 | |
## | 0.375 | 0.000 | 0.062 | |
## -------------|-----------|-----------|-----------|-----------|
## Column Total | 15 | 12 | 5 | 32 |
## | 0.469 | 0.375 | 0.156 | |
## -------------|-----------|-----------|-----------|-----------|
##
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##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chiˆ2 = 18.04 d.f. = 4 p = 0.001214
##
##
##

Two way cross tabulation in SPSS format

library(gmodels)
CrossTable(df$cyl, df$gear, format = "SPSS")

##
## Cell Contents
## |-------------------------|
## | Count |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 32
##
## | df$gear
## df$cyl | 3 | 4 | 5 | Row Total |
## -------------|-----------|-----------|-----------|-----------|
## 4 | 1 | 8 | 2 | 11 |
## | 3.350 | 3.640 | 0.046 | |
## | 9.091% | 72.727% | 18.182% | 34.375% |
## | 6.667% | 66.667% | 40.000% | |
## | 3.125% | 25.000% | 6.250% | |
## -------------|-----------|-----------|-----------|-----------|
## 6 | 2 | 4 | 1 | 7 |
## | 0.500 | 0.720 | 0.008 | |
## | 28.571% | 57.143% | 14.286% | 21.875% |
## | 13.333% | 33.333% | 20.000% | |
## | 6.250% | 12.500% | 3.125% | |
## -------------|-----------|-----------|-----------|-----------|
## 8 | 12 | 0 | 2 | 14 |
## | 4.505 | 5.250 | 0.016 | |
## | 85.714% | 0.000% | 14.286% | 43.750% |
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## | 80.000% | 0.000% | 40.000% | |
## | 37.500% | 0.000% | 6.250% | |
## -------------|-----------|-----------|-----------|-----------|
## Column Total | 15 | 12 | 5 | 32 |
## | 46.875% | 37.500% | 15.625% | |
## -------------|-----------|-----------|-----------|-----------|
##
##

CrossTable(df$cyl, df$gear, expected = TRUE, format = "SPSS")

## Warning: Chi-squared approximation may be incorrect

##
## Cell Contents
## |-------------------------|
## | Count |
## | Expected Values |
## | Chi-square contribution |
## | Row Percent |
## | Column Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 32
##
## | df$gear
## df$cyl | 3 | 4 | 5 | Row Total |
## -------------|-----------|-----------|-----------|-----------|
## 4 | 1 | 8 | 2 | 11 |
## | 5.156 | 4.125 | 1.719 | |
## | 3.350 | 3.640 | 0.046 | |
## | 9.091% | 72.727% | 18.182% | 34.375% |
## | 6.667% | 66.667% | 40.000% | |
## | 3.125% | 25.000% | 6.250% | |
## -------------|-----------|-----------|-----------|-----------|
## 6 | 2 | 4 | 1 | 7 |
## | 3.281 | 2.625 | 1.094 | |
## | 0.500 | 0.720 | 0.008 | |
## | 28.571% | 57.143% | 14.286% | 21.875% |
## | 13.333% | 33.333% | 20.000% | |
## | 6.250% | 12.500% | 3.125% | |
## -------------|-----------|-----------|-----------|-----------|
## 8 | 12 | 0 | 2 | 14 |
## | 6.562 | 5.250 | 2.188 | |
## | 4.505 | 5.250 | 0.016 | |
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## | 85.714% | 0.000% | 14.286% | 43.750% |
## | 80.000% | 0.000% | 40.000% | |
## | 37.500% | 0.000% | 6.250% | |
## -------------|-----------|-----------|-----------|-----------|
## Column Total | 15 | 12 | 5 | 32 |
## | 46.875% | 37.500% | 15.625% | |
## -------------|-----------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chiˆ2 = 18.04 d.f. = 4 p = 0.001214
##
##
##
## Minimum expected frequency: 1.094
## Cells with Expected Frequency < 5: 6 of 9 (66.67%)
##
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Chapter 10

Exploratory Data Analysis

Basic scatterplot

attach(df)

## The following object(s) are masked from 'package:ggplot2':
##
## mpg

plot(qsec, mpg, col=cyl, pch=19,
main="Miles per gallon by 1/4 mile time (by cylinder)")

legend("topleft", legend=unique(cyl), fill=unique(cyl))
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10.1 Hierarchical Cluster Analysis

Or calculate correlation and view on heatmap

heatmap(cor(df))

qs
ec vs

m
pg

dr
at am

ge
ar w

t
cy

l
di

sp hp
ca

rb

qsec
vs
mpg
drat
am
gear
wt
cyl
disp
hp
carb

We can look at the US state fact and figure information in the package state, which contains a
matrix called state.x77 containing information on 50 US states (50 rows) on population, income,
Illiteracy, life expectancy, murder, high school graduation, number of days with frost, and area
(8 columns). The default clustering of this uses a rather ugly red-yellow color scheme which I
changed to a red/brown-blue.

require(RColorBrewer)
hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(500)
heatmap(t(state.x77), col = hmcol, scale = "row")
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heatmap.2(t(state.x77), col = hmcol, scale = "row", trace = "none")
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10.2 Principcal component analysis
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res <- prcomp(df)
screeplot(res)
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Or using fast.prcomp (optimized for big wide datasets)

res <- fast.prcomp(df)

Or using dudi.pca in ade4. The R package has some very nicely graphicing tools for visualizing
the results of PCA

res <- dudi.pca(df, scan = FALSE)
par(mfrow = c(2, 2))
barplot(res$eig)
s.label(res$co, sub = "Car features", boxes = FALSE)
s.class(res$li, factor(cyl), col = unique(cyl), sub = "Cylinder of cars")
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s.class(res$li, factor(mpg < 20, labels = c("<20", ">20")),
sub = "MPG of cars", col = c("green4", "orange"))
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10.3 Multivariate methods for exploring covariance across multiple data
sets

Often we have 2 or more matrices either reflecting different time points of the same sample pop-
ulation or different measuments on the same population and we wish to explore the correlation or
covariance between these datasets.
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Lets look at the doubs data in the ade4 package. This data set gives environmental variables,
fish species and spatial coordinates for 30 sites

require(ade4)
data(doubs)
lapply(doubs, head, 2)

## $env
## dfs alt slo flo pH har pho nit amm oxy bdo
## 1 3 934 6.176 84 79 45 1 20 0 122 27
## 2 22 932 3.434 100 80 40 2 20 10 103 19
##
## $fish
## Cogo Satr Phph Neba Thth Teso Chna Chto Lele Lece Baba Spbi Gogo
## 1 0 3 0 0 0 0 0 0 0 0 0 0 0
## 2 0 5 4 3 0 0 0 0 0 0 0 0 0
## Eslu Pefl Rham Legi Scer Cyca Titi Abbr Icme Acce Ruru Blbj Alal
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## Anan
## 1 0
## 2 0
##
## $xy
## x y
## 1 88 7
## 2 94 14
##
## $species
## Scientific French English code
## 1 Cottus gobio chabot european bullhead Cogo
## 2 Salmo trutta fario truite fario brown trout Satr
##

dudi1 <- dudi.pca(doubs$env, scale = TRUE, scannf = FALSE,
nf = 3)

dudi2 <- dudi.pca(doubs$fish, scale = FALSE, scannf = FALSE,
nf = 2)

coin1 <- coinertia(dudi1, dudi2, scan = FALSE, nf = 2)
plot(coin1)
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# s.arrow(coin1$l1, clab = 0.7)
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Chapter 11

Writing Reports and Reproducible
Research

The aim of reproducible research is to provide code such that an experiement/analysis can be easily
repeated. The best approach is to create a document of results, in which the code to generate those
results are embedded.

11.1 Stitch and Spin

There are simplest way to generate reproducible documents in R is to generate a report from a
simple R script.

The knitr calls Roxgyen to do this. Anything written after a comment ## is converted to text,
all other text is assumed to be R code and will be executed using the function spin.

spin("myScript.R") ## Create a markdown file (default
spin("myScript.R", format = "Rhtml") # create webpage
spin("myScript.R", format = "Rtex") # latex file

For more options see help on spin (?spin). The markdown file can be easily convert to MSOffice
using pandoc. There is an example below.

Another function from Knitr called stitch() will insert an R script into a template to create a
simple report. Knitr supplies a template web page (html), markdown and latex file.

11.2 Sweave

Therefore there is broad support for Sweave. Most of the documentation in R is written in Sweave
files

Seaves ”weaves” R (or S) code into latex. This document is written in Sweave, but had recently
been converted to knitr (more about how to do that later).

You can also write R code embedded in a html template file and process this using Sweave
In each case the native document format is written tex or html, but R code is put in chunks.

These chunks are marked by <<>> and @.
You can also put shorter snippets of R code in text using the function eg \Sexprs{a3+ will

evaluate a3 +
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11.2.1 Converting an Rnw file in Sweave to Knitr

Whilst Sweave is still used widely, increasingly its being replaced by knitr which has more func-
tionality.

Its easy to convert a Sweave rnw file to a knitr rnw

• knitr does not allow spaces in code chunks, so either remove or subsitute spaces for any other
character eg

<<My Code Example 1>>= ## Allowed by Sweave not knitr
@
<<MyCodeExample1>>= ## Ok for either Sweave or knitr
@

• knitr has many more option for formating code withint the document. Most of these are not
available in Sweave so these do not affect conversion. For example, Sweave has the results
options verbatim/hide/tex, knitr has options ’markup’, ’hide’, ’asis’. Note knitr requires the
option be enclosed in single quotes.

<<M1, results=hide>>= ## Allowed by Sweave not knitr
@
<<M1, results='hide'>>= ## Ok for knitr
@

11.3 knitr, knit, purl

knitr is a relatively new R package that extends Sweave, pdfSweave or cacheSweave and can
created R code embedded in many different formats. It has several features, including its ability to
cache results and nice colors of code for easier reading.

11.4 Creating Markdown Documents

Markdown is a very simple formatting syntax for authoring web pages which can be converted to
numerous format. R markdown files conventionaly have the file ending ”rmd”.

Within a markdown document you embed R code in triple single back quotes. Within the
curly braces, you specificy you are running r code and can give the code chunk a label. eg
```{r MyRCode}

```{r}
summary(cars)
```

You can also embed plots, for example:
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```{r fig.width=7, fig.height=6}
plot(cars)
```

Then to create the markdown file with embedded R code and results, run the command knit.

11.4.1 Converting markdown to other file formats including MSOffice

Markdown is versatible and its simplicity means it can be converted to numerous formats, including
pdf and html files, but also MSOffice files or HTML5 slides using a FREE softare called pandoc
http://johnmacfarlane.net/pandoc/index.html

I have much more details and examples on the webpage http://bcb.dfci.harvard.
edu/˜aedin/courses/ReproducibleResearch/
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Chapter 12

Solutions to Exercises

12.1 Solution to Exercise 1

Women Data

myURL <- "http://bcb.dfci.harvard.edu/˜aedin/courses/R/Women.txt"
women <- read.table(myURL, sep = "\t", header = TRUE)
`?`(colnames)
women

## height weight age
## 1 58 115 33
## 2 59 117 34
## 3 60 120 37
## 4 61 123 31
## 5 62 126 31
## 6 63 129 34
## 7 64 132 31
## 8 65 135 39
## 9 66 139 35
## 10 67 142 34
## 11 68 146 34
## 12 69 150 36
## 13 70 154 33
## 14 71 159 30
## 15 72 164 37

class(women)

## [1] "data.frame"

str(women)

## 'data.frame': 15 obs. of 3 variables:
## $ height: int 58 59 60 61 62 63 64 65 66 67 ...
## $ weight: int 115 117 120 123 126 129 132 135 139 142 ...
## $ age : int 33 34 37 31 31 34 31 39 35 34 ...
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nrow(women)

## [1] 15

ncol(women)

## [1] 3

dim(women)

## [1] 15 3

summary(women)

## height weight age
## Min. :58.0 Min. :115 Min. :30.0
## 1st Qu.:61.5 1st Qu.:124 1st Qu.:32.0
## Median :65.0 Median :135 Median :34.0
## Mean :65.0 Mean :137 Mean :33.9
## 3rd Qu.:68.5 3rd Qu.:148 3rd Qu.:35.5
## Max. :72.0 Max. :164 Max. :39.0

colMeans(women)

## height weight age
## 65.00 136.73 33.93

colnames(women)

## [1] "height" "weight" "age"

`?`(colnames)
sum(women$weight < 120)

## [1] 2

women[order(women$weight), ]

## height weight age
## 1 58 115 33
## 2 59 117 34
## 3 60 120 37
## 4 61 123 31
## 5 62 126 31
## 6 63 129 34
## 7 64 132 31
## 8 65 135 39
## 9 66 139 35
## 10 67 142 34
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## 11 68 146 34
## 12 69 150 36
## 13 70 154 33
## 14 71 159 30
## 15 72 164 37

mean(women$height[women$weight > 124 & women$weight < 150])

## [1] 65

rownames(women)[5] <- "Lucy"

12.2 Solution to Exercise 2

ToothGrowth data

TG <- read.table("ToothGrowth.txt", sep = "\t", header = TRUE)
TG2 <- read.csv("ToothGrowth.csv")
nrow(TG)

## [1] 60

nrow(TG2)

## [1] 60

mean(TG$len)

## [1] 18.81

sd(TG$len)

## [1] 7.649

mean(TG2$len)

## [1] 18.81

sd(TG2$len)

## [1] 7.649

anova(lm(len ˜ supp + dose, data = TG))
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## Analysis of Variance Table
##
## Response: len
## Df Sum Sq Mean Sq F value Pr(>F)
## supp 1 205 205 11.4 0.0013 **
## dose 1 2224 2224 124.0 6.3e-16 ***
## Residuals 57 1023 18
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

12.3 Solution to Exercise 3

women <- read.table("http://bcb.dfci.harvard.edu/˜aedin/courses/R/WomenStats.txt",
sep = "\t", header = TRUE)

nrow(women)

## [1] 16

ncol(women)

## [1] 1

colnames(women)

## [1] "X.html."

summary(women)

## X.html.
## </div> :2
## </body> :1
## </head> :1
## </html> :1
## </td></tr></table> :1
## <body style=background-color:#fff>:1
## (Other) :9

rownames(women) <- LETTERS[1:nrow(women)]
write.table(women, "modifedWomen.txt", sep = "\t")
women2 <- read.table("modifedWomen.txt", sep = "\t", as.is = TRUE,

header = TRUE)

12.4 Solution to Exercise 4
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myVec <- c(LETTERS[1:20], seq(0, 200, 10))
myVec

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
## [11] "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T"
## [21] "0" "10" "20" "30" "40" "50" "60" "70" "80" "90"
## [31] "100" "110" "120" "130" "140" "150" "160" "170" "180" "190"
## [41] "200"

myVec <- sample(myVec)
myVec

## [1] "T" "70" "80" "200" "160" "130" "Q" "M" "100" "120"
## [11] "180" "30" "S" "110" "50" "N" "I" "190" "C" "10"
## [21] "A" "F" "140" "P" "0" "20" "B" "G" "150" "J"
## [31] "40" "L" "60" "90" "H" "E" "170" "R" "K" "D"
## [41] "O"

cat(myVec, file = "myVec.txt")
scan("myVec.txt", n = 10, what = "text")

## [1] "T" "70" "80" "200" "160" "130" "Q" "M" "100" "120"

scan("myVec.txt", n = 10, what = 123)

## Error: scan() expected 'a real', got 'T'

scan("myVec.txt", n = 10, what = TRUE)

## Error: scan() expected 'a logical', got '70'

12.5 Solution to Exercise 5

for (i in 1:10) print(2ˆi)

## [1] 2
## [1] 4
## [1] 8
## [1] 16
## [1] 32
## [1] 64
## [1] 128
## [1] 256
## [1] 512
## [1] 1024
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x <- 1
while (2ˆx < 1000) {

print(2ˆx)
x <- x + 1

}

## [1] 2
## [1] 4
## [1] 8
## [1] 16
## [1] 32
## [1] 64
## [1] 128
## [1] 256
## [1] 512

12.6 Solution to Exercise 6

require(XML)
## Reads all the tables in the webpage into a list
worldPop <- readHTMLTable("http://en.wikipedia.org/wiki/World_population")

# There are 19 tables
class(worldPop)

## [1] "list"

length(worldPop)

## [1] 19

# With the following names, so of the names are very long so we
# have trucated them using substr
substr(names(worldPop), 1, 60)

## [1] "NULL"
## [2] "toc"
## [3] "NULL"
## [4] "World population milestones (USCB estimates)"
## [5] "The 10 countries with the largest total population:"
## [6] "10 most densely populated countries (with population above 1"
## [7] "Countries ranking highly in terms of both total population ("
## [8] "NULL"
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## [9] "UN (medium variant 2010 revision) and US Census Burea"
## [10] "UN 2008 estimates and medium variant projections (in million"
## [11] "World historical and predicted populations (in millions)[101"
## [12] "World historical and predicted populations by percentage dis"
## [13] "Estimated world and regional populations at various dates (i"
## [14] "Starting at 500 million"
## [15] "Starting at 375 million"
## [16] "NULL"
## [17] "NULL"
## [18] "NULL"
## [19] "NULL"

worldPop <- worldPop[[13]] # Just look at Table 13

To tidy up this tables, lets look at dates after 1750AD, so lets remove rows 1 to 14 as these
have only world population information. Also we will remove row 32 which is just column names

## Now lets check the structure of the table The data are factors,
## lets convert to characters as these are easier to edit
str(worldPop)

## 'data.frame': 31 obs. of 9 variables:
## $ Year : Factor w/ 31 levels "10,000 BC","1000",..: 27 1 30 29 28 26 25 23 22 19 ...
## $ World : Factor w/ 31 levels "< 0.015","1",..: 1 2 14 22 29 5 7 11 13 18 ...
## $ Africa : Factor w/ 18 levels "","1,022","106",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Asia : Factor w/ 18 levels "","1,398","1,542",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Europe : Factor w/ 18 levels "","163","203",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Latin America[Note 1]: Factor w/ 18 levels "","16","167",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Northern America : Factor w/ 18 levels "","172","187",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Oceania : Factor w/ 16 levels "","12.8","14.3",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Notes : Factor w/ 5 levels "","[103]","[104]",..: 2 1 1 3 1 1 1 1 1 1 ...

## We need to convert them to numeric. But first lets get rid of
## the BC and $<$ characters

worldPop <- apply(worldPop, 2, as.character)
str(worldPop)

## chr [1:31, 1:9] "70,000 BC" "10,000 BC" "9000 BC" ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:9] "Year" "World" "Africa" "Asia" ...
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## Remove rows 1-14, 32
worldPop <- worldPop[-c(1:14, 32), ]

## Remove 'Notes' Column
worldPop <- worldPop[, -9]

## Lets convert to numeric and remove the period
worldPop <- apply(worldPop, 2, function(x) as.numeric(sub(",",

"", x)))
worldPop <- as.data.frame(worldPop)

## Lets get rid of 'Note 1' To get rid of the square brakets we
## have to put \\ before them
colnames(worldPop) <- sub("\\[Note 1\\]", "", colnames(worldPop))
str(worldPop)

## 'data.frame': 17 obs. of 8 variables:
## $ Year : num 1750 1800 1850 1900 1950 ...
## $ World : num 791 978 1262 1650 2519 ...
## $ Africa : num 106 107 111 133 221 247 277 314 357 408 ...
## $ Asia : num 502 635 809 947 1398 ...
## $ Europe : num 163 203 276 408 547 575 601 634 656 675 ...
## $ Latin America : num 16 24 38 74 167 191 209 250 285 322 ...
## $ Northern America: num 2 7 26 82 172 187 204 219 232 243 ...
## $ Oceania : num 2 2 2 6 12.8 14.3 15.9 17.6 19.4 21.5 ...

# In what year did the population of Europe, Africa and Asia exceed
# 500 million?
for (i in c("Europe", "Asia", "Africa")) {

print(paste(i, min(worldPop$Year[worldPop[, i] > 500]), sep = " "))
}

## [1] "Europe 1950"
## [1] "Asia 1750"
## [1] "Africa 1985"

Now that the data are tidy, lets create the bonus plot

## Make a vector regions (exclude World and Year)
regions <- colnames(worldPop)[-c(1:2)]
regions

## [1] "Africa" "Asia" "Europe"
## [4] "Latin America" "Northern America" "Oceania"
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## Create a empty Plot
plot(worldPop$Year, worldPop$Asia, xlab = "Year", ylab = "Population (millions)",

col = "red", type = "n", ylim = c(200, 4000))

for (i in 1:length(regions)) {
region <- regions[i]
print(region)
lines(worldPop$Year, worldPop[, region], col = i, type = "l")

}

## [1] "Africa"
## [1] "Asia"
## [1] "Europe"
## [1] "Latin America"
## [1] "Northern America"
## [1] "Oceania"

legend("topleft", regions, fil = 1:length(regions))
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12.7 Solution to Exercise 7

TG <- read.table("ToothGrowth.txt", sep = "\t", header = TRUE)
summary(TG)

## len supp dose
## Min. : 4.2 OJ:30 Min. :0.50
## 1st Qu.:13.1 VC:30 1st Qu.:0.50
## Median :19.2 Median :1.00
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## Mean :18.8 Mean :1.17
## 3rd Qu.:25.3 3rd Qu.:2.00
## Max. :33.9 Max. :2.00

par(mfrow = c(1, 2))
boxplot(TG$len ˜ TG$supp, col = 2:4, las = 2, xlab = "Treatment",

ylab = "Tooth Length")
boxplot(TG$len ˜ paste(TG$supp, TG$dose), col = rep(2:3, each = 3),

las = 2, xlab = "Treatment and Dose", ylab = "Tooth Length")

12.8 Solution to Exercise 8

par(mfrow = c(2, 2))
data(women)
attach(women)
plot(height, weight)
plot(weight, height)
plot(weight, height, pch = 19, col = "red", main = "Study of Women")
plot(weight, height, xlab = "Weight of Women (lbs)", ylab = "height of women (inches)",

pch = 15, col = "red", cex = 1.5)
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12.9 Solution to Exercise 9

mod1 <- lm(Hwt ˜ Sex, data = cats)
model.matrix(mod1)[1:10, ]

## (Intercept) SexM
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0
## 7 1 0
## 8 1 0
## 9 1 0
## 10 1 0

mod1 <- lm(Hwt ˜ Sex - 1, data = cats)
model.matrix(mod1)[1:10, ]

## SexF SexM
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0
## 7 1 0
## 8 1 0
## 9 1 0
## 10 1 0

12.10 Solution to Exercise 10

data.lungs <- read.csv("lungs.csv", stringsAsFactors = FALSE)
head(data.lungs)

## age sex height weight bmp fev1 rv frc tlc pemax
## 1 7 0 109 13.1 68 32 258 183 137 95
## 2 7 1 112 12.9 65 19 449 245 134 85
## 3 8 0 124 14.1 64 22 441 268 147 100
## 4 8 1 125 16.2 67 41 234 146 124 85
## 5 8 0 127 21.5 93 52 202 131 104 95
## 6 9 0 130 17.5 68 44 308 155 118 80
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lungFit <- lm(pemax ˜ ., data = data.lungs)
summary(lungFit)

##
## Call:
## lm(formula = pemax ˜ ., data = data.lungs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.34 -11.53 1.08 13.39 33.41
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 176.058 225.891 0.78 0.45
## age -2.542 4.802 -0.53 0.60
## sex -3.737 15.460 -0.24 0.81
## height -0.446 0.903 -0.49 0.63
## weight 2.993 2.008 1.49 0.16
## bmp -1.745 1.155 -1.51 0.15
## fev1 1.081 1.081 1.00 0.33
## rv 0.197 0.196 1.00 0.33
## frc -0.308 0.492 -0.63 0.54
## tlc 0.189 0.500 0.38 0.71
##
## Residual standard error: 25.5 on 15 degrees of freedom
## Multiple R-squared: 0.637,Adjusted R-squared: 0.42
## F-statistic: 2.93 on 9 and 15 DF, p-value: 0.032
##

resid(lungFit)

## 1 2 3 4 5 6 7 8
## 10.031 -3.414 13.386 -11.532 18.691 -31.552 -11.480 20.034
## 9 10 11 12 13 14 15 16
## -20.307 -13.182 15.646 10.748 -3.664 -33.118 10.460 33.405
## 17 18 19 20 21 22 23 24
## 21.034 -3.002 12.096 1.081 -37.338 11.864 -4.332 -34.233
## 25
## 28.677

## most significant
sort(summary(lungFit)$coefficients[, 4], decreasing = FALSE)[1]

## bmp
## 0.1517
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## least significant
sort(summary(lungFit)$coefficients[, 4], decreasing = TRUE)[1]

## sex
## 0.8123

12.11 Solution to Exercise 11

library(survival)
head(colon)

## id study rx sex age obstruct perfor adhere nodes status
## 1 1 1 Lev+5FU 1 43 0 0 0 5 1
## 2 1 1 Lev+5FU 1 43 0 0 0 5 1
## 3 2 1 Lev+5FU 1 63 0 0 0 1 0
## 4 2 1 Lev+5FU 1 63 0 0 0 1 0
## 5 3 1 Obs 0 71 0 0 1 7 1
## 6 3 1 Obs 0 71 0 0 1 7 1
## differ extent surg node4 time etype
## 1 2 3 0 1 1521 2
## 2 2 3 0 1 968 1
## 3 2 3 0 0 3087 2
## 4 2 3 0 0 3087 1
## 5 2 2 0 1 963 2
## 6 2 2 0 1 542 1

colonFit <- survfit(Surv(time, status) ˜ rx, data = colon)
plot(colonFit)
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plot(colonFit, col = 2:4, lwd = 2)
plot(colonFit, col = 2:4, lwd = 2)
legend("bottomleft", legend = levels(colon$rx), fill = 2:4)
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pdf(file = "Surv.pdf")
plot(colonFit, col = 2:4, lwd = 2)
legend("bottomleft", legend = levels(colon$rx), fill = 2:4)
dev.off()

## pdf
## 2

survdiff(Surv(time, status) ˜ rx, data = colon)
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## Call:
## survdiff(formula = Surv(time, status) ˜ rx, data = colon)
##
## N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V
## rx=Obs 630 345 299 7.01 10.40
## rx=Lev 620 333 295 4.93 7.26
## rx=Lev+5FU 608 242 326 21.61 33.54
##
## Chisq= 33.6 on 2 degrees of freedom, p= 4.99e-08

cp <- coxph(Surv(time, status) ˜ rx, data = colon)
summary(cp)

## Call:
## coxph(formula = Surv(time, status) ˜ rx, data = colon)
##
## n= 1858, number of events= 920
##
## coef exp(coef) se(coef) z Pr(>|z|)
## rxLev -0.0209 0.9793 0.0768 -0.27 0.79
## rxLev+5FU -0.4410 0.6434 0.0839 -5.26 1.5e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## rxLev 0.979 1.02 0.842 1.138
## rxLev+5FU 0.643 1.55 0.546 0.758
##
## Concordance= 0.545 (se = 0.009 )
## Rsquare= 0.019 (max possible= 0.999 )
## Likelihood ratio test= 35.2 on 2 df, p=2.23e-08
## Wald test = 33.1 on 2 df, p=6.45e-08
## Score (logrank) test = 33.6 on 2 df, p=4.99e-08
##
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12.12 SessionInfo

sessionInfo()

## R version 2.15.1 (2012-06-22)
## Platform: i386-pc-mingw32/i386 (32-bit)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] splines grid stats graphics grDevices utils
## [7] datasets methods base
##
## other attached packages:
## [1] Hmisc_3.9-3 gmodels_2.15.2
## [3] survival_2.36-14 vcd_1.2-13
## [5] colorspace_1.1-1 annotate_1.33.2
## [7] AnnotationDbi_1.17.22 Biobase_2.15.3
## [9] BiocGenerics_0.1.7 wordcloud_2.2
## [11] Rcpp_0.9.11 tm_0.5-8
## [13] igraph_0.6-2 network_1.7-1
## [15] googleVis_0.2.16 RJSONIO_0.98-1
## [17] lattice_0.20-6 ggplot2_0.9.1
## [19] ade4_1.5-1 RColorBrewer_1.0-5
## [21] venneuler_1.1-0 rJava_0.9-3
## [23] scatterplot3d_0.3-33 gplots_2.11.0
## [25] MASS_7.3-18 KernSmooth_2.23-7
## [27] caTools_1.13 bitops_1.0-4.1
## [29] gdata_2.11.0 gtools_2.7.0
## [31] XML_3.9-4.1 SAScii_0.2
## [33] stringr_0.6 R2HTML_2.2
## [35] knitr_0.6.3
##
## loaded via a namespace (and not attached):
## [1] cluster_1.14.2 DBI_0.2-5 dichromat_1.2-4 digest_0.5.2
## [5] evaluate_0.4.2 formatR_0.5 IRanges_1.13.26 labeling_0.1
## [9] memoise_0.1 munsell_0.3 parser_0.0-15 plyr_1.7.1
## [13] proto_0.3-9.2 reshape2_1.2.1 RSQLite_0.11.1 scales_0.2.1
## [17] slam_0.1-26 tools_2.15.1 xtable_1.7-0
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