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Background

Phenotypes result from biological networks, not individual genes

New biotechnologies allow us to analyze multiple genes in parallel:
I next generation sequencing
I gene expression profiling
I Chip-seq
I . . .

Understand the complex interactions between genes and the behavior
of a network is fundamental

I to bring new biological insights
I to make ”useful” predictions
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Relevance

Aim: Infer reliable predictive gene interaction networks from gene
expression data

Beyond biological understanding, such networks would be efficient tools
for:

predicting the response of an organism (cancer patient) to
perturbations (targeted therapies)

identifying the key genes to target for significantly decreasing a
pathway activity

optimizing combination of drugs and therapy regiments

Benjamin Haibe-Kains (DFCI/HSPH) R/Bioconductor Course December 15, 2011 3 / 12



Gene Interaction Network

Genes are represented as
”nodes”

Interactions are represented
by ”edges”

Edges can be directed to
show ”causal” interactions

Edges are not necessarily
direct interactions
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Gene Interaction Network and Perturbation

gene a

gene b

gene c

gene d

gene e

gene f

gene g

gene h

High
expression

Low
expression

gene a

gene b

gene c

gene d

gene e

gene e

gene g

gene h

Perturbation

Benjamin Haibe-Kains (DFCI/HSPH) R/Bioconductor Course December 15, 2011 5 / 12



Challenges in network inference
. . . and how we address them

1 Problem complexity : seed the search for the ”best” network by using
prior biological knowledge about gene interactions

ß Predictive Networks web application

2 Curse of dimensionality : development of a local regression-based
network inference to enable analysis of hundreds of genes in parallel

3 Lack of validation: development of performance criteria to assess the
quality of network models

4 Lack of software: implementation of network inference methods and
related tools in R

ß predictionet package
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Predictive Networks web application

https://compbio.dfci.harvard.edu/predictivenetworks/
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Regression-based network inference
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Performance criteria for network inference

We implement a cross-validation framework to assess:

edge-specific stability: what are the interactions inferred in most of
the cross-validation folds?

gene-specific prediction score: what are the genes whose expression
can be well predicted by their parent/source genes?
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Predictionet R package

https://github.com/bhaibeka/predictionet
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