
Basic Graphics in R

CCCB course on R and Bioconductor, Dec 2011,

Aedin Culhane (My email is: aedin@jimmy.harvard.edu)

To start let’s look at the basic plots that can be produced in R using the demo() function

> demo(graphics)

On startup, R initiates a graphics device driver which opens a special graphics window for the display
of interactive graphics. If a new graphics window needs to be opened either win.graph() or windows()
command can be issued.

Once the device driver is running, R plotting commands can be used to produce a variety of graphical
displays and to create entirely new kinds of display.

Plotting commands divided into three basic groups

1. High-level plotting functions c eate a new plot on the graphics device, possibly with axes,
labels, titles and so on.

2. Low-level plotting functions add more information to an existing plot, such as extra points,
lines and labels.

3. Interactive graphics functions allow you to interactively add information to, or extract infor-
mation from the plots

In addition, R maintains a list of graphical parameters which can be manipulated to customize your
plots.

1

I High-level plotting functions

High-level plotting functions are designed to generate a complete plot of the data passed as arguments
to the function. Where appropriate, axes, labels and titles are automatically generated (unless you
request otherwise). High-level plotting commands always start a new plot, erasing the current plot
if necessary.

I.1 The R function plot()

The plot() function is one of the most frequently used plotting functions in R.

IMPORTANT: This is a generic function, that is the type of plot produced is dependent on the class
of the first argument.

� Plot of Vector(s)

1. One vector x (plots the vector against the index vector)

> x <- 1:10

> plot(x)

2. Scatterplot of two vectors x and y

> set.seed(13)

> x <- -30:30

> y <- 3 * x + 2 + rnorm(length(x), sd = 20)

> plot(x, y)

� Plot of data.frame elements If the first argument to plot() is a data.frame, this can be as simply
as plot(x,y) providing 2 columns (variables in the data.frame).

Lets look at the data in the data.frame airquality which measured the 6 air quality in New
York, on a daily basis between May to September 1973. In total there are 154 observation
(days).

> airquality[1:2,]

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

> plot(airquality)

Multiple plots in the same window, attach/detach

> par(mfrow = c(2, 1))

> plot(airquality$Ozone, airquality$Temp, main = "airquality$Ozone,airquality$Temp")

> attach(airquality)

> plot(Ozone, Temp, main = "plot(Ozone, Temp)")

> detach(airquality)

2

I.2 Other high-level graphics functions

� boxplot(x) a boxplot show the distribution of a vector. It is very useful to example the distri-
bution of different variables.

> boxplot(airquality)

●

●

●●●

Ozone Solar.R Wind Temp Month Day

0
50

10
0

15
0

20
0

25
0

30
0

Note if you give plot a vector and factor plot(factor, vector) or plot(vector factor) it will produce
a boxplot.

> par(mfrow = c(2, 2))

> boxplot(airquality$Ozone ~ airquality$Month, col = 2:6, xlab = "month",

+ ylab = "ozone", sub = "boxplot(airquality$Ozone~airquality$Month")

> title("Equivalent plots")

> plot(factor(airquality$Month), airquality$Ozone, col = 2:6, xlab = "month",

+ ylab = "ozone", sub = "plot(factor(airquality$Month), airquality$Ozone")

> plot(airquality$Ozone ~ factor(airquality$Month), col = 2:6,

+ sub = "plot(airquality$Ozone~factor(airquality$Month)")

3

●

●

●

●
●

●

5 6 7 8 9

0
50

10
0

15
0

boxplot(airquality$Ozone~airquality$Month
month

oz
on

e
Equivalent plots

●

●

●

●
●

●

5 6 7 8 9

0
50

10
0

15
0

plot(factor(airquality$Month), airquality$Ozone
month

oz
on

e

●

●

●

●
●

●

5 6 7 8 9

0
50

10
0

15
0

plot(airquality$Ozone~factor(airquality$Month)
factor(airquality$Month)

ai
rq

ua
lit

y$
O

zo
ne

� barplot Plot a bar plot of the mean ozone quality by month. First use tapply to calculate the
mean of ozone by month

> OzMonthMean <- tapply(airquality$Ozone, factor(airquality$Month),

+ mean, na.rm = TRUE)

> par(mfrow = c(1, 2))

> barplot(OzMonthMean, col = 2:6, main = "Mean Ozone by month")

4

5 6 7 8 9

Mean Ozone by month

0
10

20
30

40
50

� pie chart

> pie(OzMonthMean, col = rainbow(5))

5

5

6

7

8

9

� hist(x)- histogram of a numeric vector x with a few important optional arguments: nclass=

for the number of classes, and breaks= for the breakpoints

> xt <- rt(100, 3)

> hist(xt)

> plot(density(xt))

I.3 Arguments to high-level plotting functions

axes=FALSE Suppresses generation of axes-useful for adding your own custom axes with the
axis() function. The default, axes=TRUE, means include axes.

type= The type= argument controls the type of plot produced, as follows:

type=”p” Plot individual points (the default)

type=”l” Plot lines

type=”b” Plot points connected by lines (both)

type=”o” Plot points overlaid by lines

6

type=”h” Plot vertical lines from points to the zero axis (high-density)

type=”n” No plotting at all. However axes are still drawn (by default) and the coordinate system is
set up according to the data. Ideal for creating plots with subsequent low-level graphics
functions.

xlab=string

ylab=string Axis labels for the x and y axes. Use these arguments to change the default labels,
usually the names of the objects used in the call to the high-level plotting function.

main=string Figure title, placed at the top of the plot in a large font.

sub=string Sub-title, placed just below the x-axis in a smaller font.

Some Examples of Plotting using different plot types and axes

> xp <- 1:100/100

> yp <- 3 * xp^2 - 2 * xp + rnorm(100, sd = 0.2)

> par(mfrow = c(3, 2))

> for (i in c("l", "b", "o", "h")) plot(xp, yp, type = i, main = paste("Plot type:",

+ i))

> plot(xp, yp, type = "o", xlab = "index", ylab = "values", main = "R simple plot")

> plot(xp, yp, type = "l", axes = FALSE)

> axis(1)

> axis(2, at = c(-0.6, 0, 0.6, 1.2), col = "blue")

> axis(3, at = c(0, 0.25, 0.5, 0.75, 1), col = "red")

> axis(4, col = "violet", col.axis = "dark violet", lwd = 2)

7

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5
Plot type: l

xp

yp

●●

●

●

●

●●

●
●
●
●
●●

●
●
●
●

●
●●

●
●●

●

●

●

●
●

●
●

●●
●●

●●

●
●
●

●
●

●
●

●●
●

●

●

●
●●

●

●

●
●●

●●
●
●

●●

●
●

●●●

●

●
●●●

●

●
●

●

●

●

●●

●

●
●

●

●
●
●●

●

●●●

●
●

●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5

Plot type: b

xp

yp
●●

●

●

●

●●

●
●
●
●
●●

●
●
●
●

●
●●

●
●●

●

●

●

●
●

●
●

●●
●●

●●

●
●
●

●
●

●
●

●●
●

●

●

●
●●

●

●

●
●●

●●
●
●

●●

●
●

●●●

●

●
●●●

●

●
●

●

●

●

●●

●

●
●

●

●
●
●●

●

●●●

●
●

●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5

Plot type: o

xp

yp

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5

Plot type: h

xp

yp

●●

●

●

●

●●

●
●
●
●
●●

●
●
●
●

●
●●

●
●●

●

●

●

●
●

●
●

●●
●●

●●

●
●
●

●
●

●
●

●●
●

●

●

●
●●

●

●

●
●●

●●
●
●

●●

●
●

●●●

●

●
●●●

●

●
●

●

●

●

●●

●

●
●

●

●
●
●●

●

●●●

●
●

●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

5

R simple plot

index

va
lu

es

xp

yp

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
0.

6

0.00 0.25 0.50 0.75 1.00

−
0.

5
0.

5

II Low-level plotting commands

Sometimes the high-level plotting functions don’t produce exactly the kind of plot you desire. In
this case, low-level plotting commands can be used to add extra information (such as points, lines
or text) to the current plot. Some of the more useful low-level plotting functions are:

points(x, y)

lines(x, y) Adds points or connected lines to the current plot.

text(x, y, labels, ...) Add text to a plot at points given by x, y. Normally labels is an integer or
character vector in which case labels[i] is plotted at point (x[i], y[i]). The default is 1:length(x).
Note: This function is often used in the sequence

The graphics parameter type=”n” suppresses the points but sets up the axes, and the text()

function supplies special characters, as specified by the character vector names for the points.

abline(a, b) Adds a line of slope b and intercept a to the current plot.

8

abline(h=y) Adds a horizontal line

abline(v=x) Adds a vertical line

polygon(x, y, ...) Draws a polygon defined by the ordered vertices in (x, y) and (optionally) shade
it in with hatch lines, or fill it if the graphics device allows the filling of figures.

legend(x, y, legend, ...) Adds a legend to the current plot at the specified position. Plotting
characters, line styles, colors etc., are identified with the labels in the character vector legend.
At least one other argument v (a vector the same length as legend) with the corresponding
values of the plotting unit must also be given, as follows:
legend(, fill=v) Colors for filled boxes
legend(, col=v) Colors in which points or lines will be drawn
legend(, lty=v) Line styles
legend(, lwd=v) Line widths
legend(, pch=v) Plotting characters

title(main, sub) Adds a title main to the top of the current plot in a large font and (optionally) a
sub-title sub at the bottom in a smaller font.

axis(side, ...) Adds an axis to the current plot on the side given by the first argument (1 to 4,
counting clockwise from the bottom.) Other arguments control the positioning of the axis
within or beside the plot, and tick positions and labels. Useful for adding custom axes after
calling plot() with the axes=FALSE argument.

To add greek characters, either specifiy font type 5 (see below) or use the function expression

> plot(x, cos(x), main = expression(paste("A random eqn ", bar(x)) ==

+ sum(frac(alpha[i] + beta[z], n))), sub = "This is the subtitle")

Example using points lines and legend

> attach(cars)

> plot(cars, type = "n", xlab = "Speed [mph]", ylab = "Distance [ft]")

> points(speed[speed < 15], dist[speed < 15], pch = "s", col = "blue")

> points(speed[speed >= 15], dist[speed >= 15], pch = "f", col = "green")

> lines(lowess(cars), col = "red")

> legend(5, 120, pch = c("s", "f"), col = c("blue", "green"), legend = c("Slow",

+ "Fast"))

> title("Breaking distance of old cars")

> detach(2)

To add formulae or greek characters to a plot

> par(mfrow = c(2, 1))

> x <- rexp(100, rate = 0.5)

> hist(x, main = "Mean and Median of a Skewed Distribution")

> abline(v = mean(x), col = 2, lty = 2, lwd = 2)

> abline(v = median(x), col = 3, lty = 3, lwd = 2)

9

> ex1 <- expression(bar(x) == sum(over(x[i], n), i == 1, n), hat(x) ==

+ median(x[i], i == 1, n))

> legend(4.1, 30, ex1, col = 2:3, lty = 2:3, lwd = 2)

> x <- seq(-pi, pi, len = 65)

> plot(x, sin(x), type = "l", col = "blue", xlab = expression(phi),

+ ylab = expression(f(phi)))

> lines(x, cos(x), col = "magenta", lty = 2)

> abline(h = -1:1, v = pi/2 * (-6:6), col = "gray90")

> ex2 <- expression(plain(sin) * phi, paste("cos", phi))

> legend(-3, 0.9, ex2, lty = 1:2, col = c("blue", "magenta"), adj = c(0,

+ 0.6))

Mean and Median of a Skewed Distribution

x

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
20

40
60

x = ∑
i=1

n xi

n

x̂ = median(xi, i = 1, n)

−3 −2 −1 0 1 2 3

−
1.

0
0.

0
1.

0

φ

f(φ
)

sinφ
cosφ

10

III Interacting with graphics

R also provides functions which allow users to extract or add information to a plot using a mouse via
locator() and verb+identify() functions respectively.

> plot(1:20, rt(20, 1))

> text(locator(1), "outlier", adj = 0)

Waits for the user to select locations on the current plot using the left mouse button.

> attach(women)

> plot(height, weight)

> identify(height, weight, women)

> detach(2)

Allow the user to highlight any of the points (identify(x,y,label)) defined by x and y (using the
left mouse button) by plotting the corresponding component of labels nearby (or the index number
of the point if labels is absent).

Right mouse click, to ”stop”.

Identify memebers in a hierachical cluster analysis of distances between European cities

> hca <- hclust(eurodist)

> plot(hca, main = "Distance between European Cities")

11

A
th

en
s

R
om

e
G

ib
ra

lta
r

Li
sb

on
M

ad
rid

S
to

ck
ho

lm
C

op
en

ha
ge

n
H

am
bu

rg
M

ila
n

G
en

ev
a

Ly
on

s
B

ar
ce

lo
na

M
ar

se
ill

es
M

un
ic

h
V

ie
nn

a
C

ol
og

ne
B

ru
ss

el
s

H
oo

k
of

 H
ol

la
nd

C
he

rb
ou

rg
C

al
ai

s
P

ar
is

0
10

00
20

00
30

00
40

00
Distance between European Cities

hclust (*, "complete")
eurodist

H
ei

gh
t

> (x <- identify(hca))

> x

IV Graphics parameters

When creating graphics, particularly for presentation or publication purposes, R’s defaults do not
always produce exactly that which is required. You can, however, customize almost every aspect of
the display using graphics parameters. R maintains a list of a large number of graphics parameters
which control things such as line style, colors, figure arrangement and text justification among many
others. Every graphics parameter has a name (such as ’col’, which controls colors,) and a value
(a color number, for example.) Graphics parameters can be set in two ways: either permanently,
affecting all graphics functions which access the current device; or temporarily, affecting only a single
graphics function call.

The par() function is used to access and modify the list of graphics parameters for the current
graphics device. See help on par() for more details.

12

IV.1 Temporary changes: Arguments to graphics functions

Graphics parameters may also be passed to any graphics function as named arguments. This has
the same effect as passing the arguments to the par() function, except that the changes only last
for the duration of the function call. For example:

> plot(1:20, rnorm(20), pch = "+")

produces a scatterplot using a plus sign as the plotting character, without changing the default
plotting character for future plots.

To see a sample of point type available in R, type

example(pch)

13

IV.2 R Colors

Thus far, we have frequently used numbers in plot to refer to a simple set of colors. There are 8
colors where 0:8 are white, black, red, green, blue, cyan, magenta, yellow and grey. If you provide a
number greater than 8, the colors are recycled. Therefore for plots where other or greater numbers
of colors are required, we need to access a larger palette of colors.

> image(1:12, 1, as.matrix(1:12), col = 0:11, main = "Default 9 Colors",

+ ylab = "", xlab = "", yaxt = "n")

2 4 6 8 10 12

Default 9 Colors

R has a large list of over 650 colors that R knows about. This list is held in the vector colors(). Have
a look at this list, and maybe search for a set you are interested in.

> colors()[1:10]

[1] "white" "aliceblue" "antiquewhite" "antiquewhite1"

[5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"

[9] "aquamarine1" "aquamarine2"

14

> length(colors())

[1] 657

> grep("yellow", colors(), value = TRUE)

[1] "greenyellow" "lightgoldenrodyellow" "lightyellow"

[4] "lightyellow1" "lightyellow2" "lightyellow3"

[7] "lightyellow4" "yellow" "yellow1"

[10] "yellow2" "yellow3" "yellow4"

[13] "yellowgreen"

R are has defined palettes of colors, which provide complementing or contrasting color sets. For
example look at the color palette rainbow.

> example(rainbow)

For a more complete listing of colors, along with the RGB numbers for each colors, the follow script
generates a several page pdf document which maybe a useful reference document for you.

> source("http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.R")

A very useful RColorBrewer http://colorbrewer.org. This package will generate a ramp color to
provide color plattes that are sequential, diverging, and qualitative ramped, for example:

� Sequential palettes are suited to ordered data that progress from low to high. Lightness steps
dominate the look of these schemes, with light colors for low data values to dark colors for high
data values.

� Diverging palettes put equal emphasis on mid-range critical values and extremes at both ends
of the data range. The critical class or break in the middle of the legend is emphasized with
light colors and low and high extremes are emphasized with dark colors that have contrasting
hues.

� Qualitative palettes do not imply magnitude differences between legend classes, and hues are
used to create the primary visual differences between classes. Qualitative schemes are best
suited to representing nominal or categorical data.

To see more about RColorBrewer run the example

> library(RColorBrewer)

> example(brewer.pal)

15

I use RColorBrewer to produce nicer colors in clustering heatmaps. For example if we look at the
US state fact and figure information in the package state, which contains a matrix called state.x77
containing information on 50 US states (50 rows) on population, income, Illiteracy, life expectancy,
murder, high school graduation, number of days with frost, and area (8 columns). The default
clustering of this uses a rather ugly red-yellow color scheme which I changed to a red/brown-blue.

> library(RColorBrewer)

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> heatmap(t(state.x77), col = hmcol)

A
la

sk
a

Te
xa

s
M

on
ta

na
C

al
ifo

rn
ia

C
ol

or
ad

o
W

yo
m

in
g

O
re

go
n

N
ew

 M
ex

ic
o

N
ev

ad
a

A
riz

on
a

W
es

t V
irg

in
ia

M
ai

ne
S

ou
th

 C
ar

ol
in

a
R

ho
de

 Is
la

nd
D

el
aw

ar
e

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
H

aw
ai

i
C

on
ne

ct
ic

ut
M

ar
yl

an
d

V
er

m
on

t
N

ew
 H

am
ps

hi
re

N
or

th
 D

ak
ot

a
W

as
hi

ng
to

n
O

kl
ah

om
a

M
is

so
ur

i
S

ou
th

 D
ak

ot
a

N
eb

ra
sk

a
M

in
ne

so
ta

K
an

sa
s

U
ta

h
Id

ah
o

N
ew

 Y
or

k
O

hi
o

P
en

ns
yl

va
ni

a
In

di
an

a
V

irg
in

ia
K

en
tu

ck
y

Te
nn

es
se

e
A

rk
an

sa
s

A
la

ba
m

a
N

or
th

 C
ar

ol
in

a
Lo

ui
si

an
a

M
is

si
ss

ip
pi

G
eo

rg
ia

Io
w

a
W

is
co

ns
in

F
lo

rid
a

M
ic

hi
ga

n
Ill

in
oi

s

Frost

Illiteracy

Murder

HS Grad

Life Exp

Population

Income

Area

16

V Advanced plotting using lattice library

Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure.
They offer abilities similar to those in the S-PLUS trellis library.

An incomplete list of lattice Functions

splom(~ data.frame) # Scatterplot matrix

bwplot(factor ~ numeric , . .) # Box and whisker plot

dotplot(factor ~ numeric , . .) # 1-dim. Display

stripplot(factor ~ numeric , . .) # 1-dim. Display

barchart(character ~ numeric,...)

histogram(~ numeric, ...) # Histogram

densityplot(~ numeric, ...) # Smoothed version of histogram

qqmath(numeric ~ numeric, ...) # QQ plot

splom(~ dataframe, ...) # Scatterplot matrix

parallel(~ dataframe, ...) # Parallel coordinate plots

VI Saving plots

R can generate graphics (of varying levels of quality) on almost any type of display or printing device.
Before this can begin, however, R needs to be informed what type of device it is dealing with. This is
done by starting a device driver. The purpose of a device driver is to convert graphical instructions
from R (”draw a line,” for example) into a form that the particular device can understand. Device
drivers are started by calling a device driver function. There is one such function for every device
driver: type help(Devices) for a list of them all.

The most useful formats for saving R graphics:

postscript() For printing on PostScript printers, or creating PostScript graphics files.

pdf() Produces a PDF file, which can also be included into PDF files.

jpeg() Produces a bitmap JPEG file, best used for image plots.

Note there is a big difference between saving files in jpeg or postscript files. Image files save in
jpg, bmp, gif etc are pixel image files, these are like photographes, where you can just select a line
and change its color. By contact vector graphic, such as postscript, or windows meta files can be
imported into drawing packages such as Adobe illustrator (or some even into powerpoint), you can
double click on an axes, and since its a vector graphic you can change the color of the line easily.

When in doubt, I save files an postscript format (eps), as several journals request this format. EPS
files can be open directly in adobe illustrator or other vector editing graphics packages.

We will demonstrate these different formats in class.

To list the current graphics devices that are open use dev.cur. When you have finished with a device,
be sure to terminate the device driver by issuing the command dev.off().

17

If you have open a device to write to for example pdf or png, dev.off will ensures that the device
finishes cleanly; for example in the case of hardcopy devices this ensures that every page is completed
and has been sent to the printer or file.

Example:

> myPath <- file.path("P:/Bio503/Plots")

> pdf(file = paste(myPath, "nicePlot.pdf", sep = ""))

> x <- seq(0, 2 * pi, length = 100)

> y <- sin(3 * x) + cos(x) + rnorm(100, sd = 0.2)

> plot(x, y)

> dev.off()

VI.1 Useful Graphics Resources

If you have plots saved in a non-vector format, we have found the web-site VectorMagic from Stanford
http://vectormagic.stanford.edu/ to be very useful. It will convert bmp or jpeg files to vecctor
format.

The free software ImageMagick http://www.imagemagick.org can be downloaded and is also useful
for converting between image format.

VII More on R graphics

One of the strengths of R is the variety and quality of its graphics capabilities. Lets looks at some
of the news worthy graphics from R

1. Google visualization

http://code.google.com/apis/visualization/documentation/gallery/motionchart.html

and how to run in R

See http://blog.revolutionanalytics.com/graphics/ for some exampels of R code

> library(googleVis)

> M <- gvisMotionChart(Fruits, "Fruit", "Year")

> plot(M)

> cat(M$html$chart, file = "tmp.html")

2. Lattice http://lmdvr.r-forge.r-project.org/figures/figures.html

3. From R you ready -InfoMaps http://ryouready.wordpress.com/ blogs on creating InfoMaps
useful for spatial data analysis

http://ryouready.wordpress.com/2009/11/16/infomaps-using-r-visualizing-german-unemployment-rates-by-color-on-a-map/

4. Rggobi http://www.ggobi.org/rggobi/ 3D visualization of multidimensional data http://

www.ggobi.org/rggobi/introduction.pdf

18

5. Graph theory and visualization of data as a graph

using the package network

> library(network)

> m <- matrix(rbinom(100, 1, 1.5/9), 10)

> diag(m) <- 0

> g <- network(m)

> plot(g)

> data(flo)

> nflo <- network(flo)

> plot(nflo, vertex.cex = apply(flo, 2, sum) + 1, usearrows = FALSE,

+ vertex.sides = 3 + apply(flo, 2, sum), vertex.col = 2 + (network.vertex.names(nflo) ==

+ "Medici"))

using the package igraph

> library(igraph)

> adj.mat <- matrix(sample(c(0, 1), 9, replace = TRUE), nr = 3)

> g <- graph.adjacency(adj.mat)

> plot(g)

6. For a discussion on different graph packages see

using Rgraphviz http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/rgraphviz/
or see the many examples on the bioconuductor website

a recent discussion online about the topic: http://stats.stackexchange.com/questions/

6155/graph-theory-analysis-and-visualization

R cytoscape http://db.systemsbiology.net:8080/cytoscape/RCytoscape/vignette/RCytoscape.
html

7. Additional demos available in the graphics package: demo(image), demo(persp) and exam-
ple(symbol).

19

VII.1 Exercise - Plotting

Using the women dataset

1. Set the plot layout to be a 2 x 2 grid (ie 2 rows, 2 columns)

2. Draw weight on the Y axis and height on the X axis.

3. Switch the orientation, Draw weight on the X axis and height on the Y axis.

4. Drawing a new plot, set the pch (point type) to be a filled circle, and color them red

5. Add a title to the plot, using the paramter main

6. Change the X axis label to be ”Weight of Women”

7. Make the point size (using the paramter cex) larger to 1.5

20

